Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 29;80(Pt 3):339–342. doi: 10.1107/S2056989024001804

Crystal structure of 1-{4-[bis­(4-methyl­phen­yl)amino]­phen­yl}ethene-1,2,2-tricarbo­nitrile

Mamoun M Bader a,*, Phuong-Truc Pham b
Editor: X Haoc
PMCID: PMC10915659  PMID: 38456047

The title compound crystallizes in the centrosymmetric ortho­rhom­bic space group Pbca, with 8 mol­ecules in the unit cell. The main feature noticeable in the structure is the impact of the tri­cyano­vinyl (TCV) group in forcing partial planarity of the portion of the mol­ecule carrying the TCV group and directing the mol­ecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell.

Keywords: crystal structure, donor/acceptor, dyes, tri­phenyl­amine, tri­cyano­vin­yl

Abstract

The title compound, C25H18N4, crystallizes in the centrosymmetric ortho­rhom­bic space group Pbca, with eight mol­ecules in the unit cell. The main feature noticeable in the structure is the impact of the tri­cyano­vinyl (TCV) group in forcing partial planarity of the portion of the mol­ecule carrying the TCV group and directing the mol­ecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intra­molecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitro­gen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC inter­actions with distances of 2.637 (17) Å.

1. Chemical context

Tri­phenyl­amine and its derivatives have been employed in a wide range of applications in materials chemistry. Some of the most exploited applications of this important building block include: hole-transport materials, organic light-emitting diodes, photoconductors, photodiodes, semiconductors, and solar cell applications. The optical properties of tri­phenyl­amine derivatives have been explored in optical telecommunications, optical data storage, laser frequency conversion, color displays, and non-linear optics including optical power limiters and multiphoton absorption (Khasbaatar et al., 2023; Kong et al., 2012; Itoo et al., 2022; Bian 2023). In particular, donor/acceptor mol­ecules incorporating this building block have received considerable attention. Synthetically, many creative and inter­esting mol­ecular architectures incorporating tri­phenyl­amines have been reported (El-Nahass et al., 2013; Ogunyemi et al., 2020).

Both mol­ecular design and solid-state structures are important in effectively using mol­ecular materials in the above-mentioned applications. Highly conjugated mol­ecules with delocalized electrons synthesized by systematic modifications allow for access to a wide range of structures. However, the way the mol­ecules are arranged in the solid state, either in thin films or in single crystals, dictates the performance of devices built with these mol­ecular materials. Attention to solid-state structures of organic functional materials has steadily gained momentum. Much more work is still needed in this area to help better understand the competing inter- and intra­molecular inter­actions in determining their solid-state structures. This study focuses on one the impact of the presence of the tri­cyano­vinyl group on the solid-state structure of the title compound, which is also compared with those of closely related structures. 1.

2. Structural commentary

The crystal structure of tri­phenyl­amine is known and has been examined several times (Martin et al., 2007; Sobolev et al., 1985; Howells et al., 1954) There are no significant close inter­actions within the unit cell of tri­phenyl­amine except for C—H⋯π with a relatively long distance (2.817Å). We also note that there have been several recent structural reports on tri­phenyl­amine derivatives, with various structural features including multi­cyano­derivatives (Ishi et al., 2019; Akahane et al., 2018; Hariharan et al., 2017; Song et al., 2006; Tang et al., 2010).

The closest reported structures to the title compound are the corresponding mol­ecule without the methyl groups tri­cyano­vinyl­tri­phenyl­amine, which we will refer to as Ph3N-TCV (CYVTPA; Vozzhennikov et al., 1979; Popova et al., 1976, 1977). It is worth mentioning that the title compound forms shiny metallic crystals with large smooth surfaces·We note that, as expected, the title compound adopts a propeller mol­ecular shape and crystallizes in the ortho­rhom­bic space group Pbca, similar to Ph3N-TCV. (Fig. 1) The angles around the central nitro­gen atom are all nearly the same, showing similar trends, with the smallest angle between the phenyl groups without the electron-accepting group: 116.71 (14), 120.27 (14), 123.02 (15)° in the title compound Me2-Ph3N-TCV and 116, 121, 123° in Ph3N-TCV, whereas the C—N bond lengths are clearly significantly shorter for the ring bearing the electron acceptor. Almost identical lengths are observed in this structure and Ph3N-TCV: 1.366 (2), 1.441 (2), 1.444 (2) Å in the title compound compared with 1.38, 1.44, 1,44 Å in Ph3N-TCV. The shortest lengths (depicted in italics) are for the N—C bond on the phenyl ring carrying the TCV groups, suggesting, as expected, intra­molecular charge transfer (Fig. 2). The angles around the central nitrogen atom indicate planarity and range from to 116.71 (14) to 123.02 (15)°.

Figure 1.

Figure 1

The mol­ecule in the crystal. Ellipsoids represent 50% probability levels.

Figure 2.

Figure 2

Bond lengths indicating charge-transfer inter­actions in the title compound.

3. Supra­molecular features

In the crystal (Fig. 3), the mol­ecules form π-stacked dimers involving the acceptor-carrying phenyl rings of two adjacent mol­ecules with a shortest atom-to-atom distance of 3.444 (15) Å, which compares with 3.616 Å in Ph3N-TCV. The dimers are further held together by C—H⋯NC inter­actions on both ends (Fig. 4). With distances of 2.637 (17) Å, the inter­actions in the title compound are slightly weaker than those observed in Ph3N-TCV (2.462 Å).

Figure 3.

Figure 3

Unit cell of the title compound.

Figure 4.

Figure 4

π-Stacking and C—H⋯N inter­actions in the title compound.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016) in February 2024 revealed more than 30 hits each for ‘tri­phenyl­amine’ and ‘tri­cyano­vin­yl’. No hits were found for the title compound. The closely related structure for a similar compound without the methyl groups (Popova et al., 1977) is compared with the title compound above.

5. Synthesis and crystallization

N,N-p-di­tolyl­aniline (Aldrich, 0.5 mmol) was reacted with tetra­cyano­ethyl­ene (TCNE, Aldrich, 0.75 mmol) in DMF (5 mL) in a 25 mL round-bottom flask at room temperature. After 2 h the reaction was worked out either by addition of 6 M HCl or extraction by methyl­ene chloride. The product was isolated as a purple solid, m.p. 462–463 K, and crystallized by slow evaporation from aceto­nitrile. 1H NMR, ppm: 7.13 (d, 6H); 7.15 (d, 4H); 7.30 (d, 2H); 2.32 (s, 6H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 1. Experimental details.

Crystal data
Chemical formula C25H18N4
M r 374.43
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 173
a, b, c (Å) 16.8662 (15), 12.8555 (11), 18.7561 (16)
V3) 4066.8 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.32 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.975, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 23265, 4170, 2586
R int 0.057
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.125, 1.02
No. of reflections 4170
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.19

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005sup1.cif

e-80-00339-sup1.cif (729KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005Isup2.hkl

e-80-00339-Isup2.hkl (332.7KB, hkl)
e-80-00339-Isup3.cml (7.3KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001804/nx2005Isup3.cml

CCDC reference: 2202337

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors also acknowledge Dr Victor Young Jr of the X-ray Crystallographic Laboratory, Department of Chemistry at the University of Minnesota for the data collection.

supplementary crystallographic information

Crystal data

C25H18N4 Dx = 1.223 Mg m3
Mr = 374.43 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 2998 reflections
a = 16.8662 (15) Å θ = 2.2–24.6°
b = 12.8555 (11) Å µ = 0.07 mm1
c = 18.7561 (16) Å T = 173 K
V = 4066.8 (6) Å3 Plate, red
Z = 8 0.35 × 0.32 × 0.03 mm
F(000) = 1568

Data collection

Bruker APEXII CCD diffractometer 2586 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.057
φ and ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −21→21
Tmin = 0.975, Tmax = 0.998 k = −15→16
23265 measured reflections l = −23→13
4170 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.047P)2 + 1.2157P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4170 reflections Δρmax = 0.39 e Å3
264 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.54561 (9) 0.35769 (12) 0.25270 (8) 0.0327 (4)
N2 0.40435 (13) 0.75779 (16) 0.48843 (10) 0.0608 (6)
N3 0.56270 (11) 0.81259 (15) 0.62522 (10) 0.0520 (5)
N4 0.71782 (13) 0.57500 (19) 0.55835 (12) 0.0784 (7)
C1 0.54228 (11) 0.42447 (14) 0.30928 (10) 0.0309 (4)
C2 0.47659 (11) 0.49077 (14) 0.31939 (10) 0.0341 (4)
H2A 0.433200 0.487458 0.287170 0.041*
C3 0.47442 (12) 0.56000 (15) 0.37507 (10) 0.0360 (5)
H3A 0.429465 0.603864 0.380322 0.043*
C4 0.53662 (11) 0.56791 (14) 0.42448 (10) 0.0331 (4)
C5 0.60170 (11) 0.50065 (15) 0.41415 (10) 0.0380 (5)
H5A 0.644920 0.503697 0.446554 0.046*
C6 0.60455 (11) 0.43136 (15) 0.35909 (10) 0.0367 (5)
H6A 0.649299 0.387029 0.354280 0.044*
C7 0.53210 (12) 0.64360 (15) 0.48125 (10) 0.0359 (5)
C8 0.58477 (12) 0.66465 (15) 0.53418 (11) 0.0402 (5)
C9 0.46017 (13) 0.70824 (16) 0.48442 (10) 0.0401 (5)
C10 0.57010 (12) 0.74718 (17) 0.58452 (11) 0.0418 (5)
C11 0.65825 (14) 0.61249 (18) 0.54528 (12) 0.0487 (6)
C12 0.48557 (11) 0.36131 (14) 0.19788 (9) 0.0319 (4)
C13 0.42598 (12) 0.28855 (16) 0.19709 (11) 0.0408 (5)
H13A 0.424981 0.234803 0.231836 0.049*
C14 0.36727 (13) 0.29368 (18) 0.14546 (12) 0.0491 (6)
H14A 0.326013 0.243369 0.145631 0.059*
C15 0.36736 (13) 0.37017 (19) 0.09383 (11) 0.0479 (6)
C16 0.42856 (14) 0.44230 (18) 0.09488 (11) 0.0524 (6)
H16A 0.430298 0.495020 0.059426 0.063*
C17 0.48744 (13) 0.43899 (16) 0.14681 (11) 0.0438 (5)
H17A 0.528520 0.489550 0.147200 0.053*
C18 0.30260 (15) 0.3765 (2) 0.03817 (13) 0.0773 (9)
H18A 0.279705 0.307222 0.030804 0.116* 0.5
H18B 0.324991 0.401877 −0.006783 0.116* 0.5
H18C 0.261172 0.424333 0.054453 0.116* 0.5
H18D 0.297540 0.448399 0.021512 0.116* 0.5
H18E 0.252254 0.353745 0.059098 0.116* 0.5
H18F 0.316073 0.331288 −0.002137 0.116* 0.5
C19 0.60719 (10) 0.28093 (14) 0.24428 (10) 0.0297 (4)
C20 0.65333 (10) 0.28135 (14) 0.18337 (10) 0.0313 (4)
H20A 0.645477 0.333290 0.148039 0.038*
C21 0.71086 (11) 0.20612 (15) 0.17394 (10) 0.0358 (5)
H21A 0.741966 0.206892 0.131715 0.043*
C22 0.72438 (11) 0.12945 (14) 0.22459 (10) 0.0344 (5)
C23 0.67765 (11) 0.13075 (15) 0.28548 (11) 0.0391 (5)
H23A 0.685992 0.079460 0.321166 0.047*
C24 0.61923 (11) 0.20484 (15) 0.29552 (11) 0.0376 (5)
H24A 0.587496 0.203584 0.337350 0.045*
C25 0.78680 (13) 0.04717 (17) 0.21395 (13) 0.0520 (6)
H25A 0.799588 0.041696 0.163120 0.078*
H25B 0.766801 −0.019848 0.231175 0.078*
H25C 0.834624 0.066109 0.240628 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0356 (9) 0.0306 (9) 0.0321 (9) 0.0070 (7) −0.0031 (7) −0.0046 (7)
N2 0.0746 (14) 0.0627 (13) 0.0451 (12) 0.0302 (12) −0.0004 (10) −0.0061 (10)
N3 0.0542 (12) 0.0501 (12) 0.0516 (12) −0.0003 (9) 0.0070 (9) −0.0149 (10)
N4 0.0614 (14) 0.0978 (18) 0.0760 (16) 0.0188 (13) −0.0223 (12) −0.0394 (14)
C1 0.0368 (10) 0.0253 (10) 0.0306 (10) 0.0008 (8) 0.0011 (8) 0.0027 (8)
C2 0.0379 (10) 0.0318 (11) 0.0327 (10) 0.0059 (9) −0.0030 (9) 0.0007 (9)
C3 0.0414 (11) 0.0307 (11) 0.0358 (11) 0.0083 (9) 0.0019 (9) 0.0019 (9)
C4 0.0428 (11) 0.0269 (10) 0.0297 (10) 0.0013 (9) 0.0041 (8) 0.0020 (8)
C5 0.0387 (11) 0.0431 (12) 0.0323 (11) 0.0028 (9) −0.0047 (9) −0.0040 (9)
C6 0.0359 (10) 0.0396 (12) 0.0347 (11) 0.0085 (9) −0.0029 (9) −0.0041 (9)
C7 0.0451 (11) 0.0314 (11) 0.0312 (11) −0.0021 (9) 0.0034 (9) 0.0050 (8)
C8 0.0450 (12) 0.0358 (12) 0.0396 (12) 0.0010 (10) 0.0041 (9) −0.0019 (9)
C9 0.0551 (13) 0.0352 (12) 0.0301 (11) 0.0061 (11) −0.0014 (10) −0.0005 (9)
C10 0.0459 (12) 0.0398 (12) 0.0398 (12) −0.0044 (10) 0.0080 (10) −0.0038 (10)
C11 0.0493 (14) 0.0481 (14) 0.0486 (14) 0.0057 (11) −0.0028 (11) −0.0173 (11)
C12 0.0361 (10) 0.0312 (11) 0.0285 (10) 0.0083 (9) −0.0021 (8) −0.0038 (8)
C13 0.0434 (11) 0.0406 (12) 0.0385 (12) 0.0026 (10) −0.0042 (9) 0.0004 (9)
C14 0.0419 (12) 0.0553 (15) 0.0502 (14) 0.0016 (11) −0.0068 (10) −0.0124 (11)
C15 0.0430 (12) 0.0658 (16) 0.0348 (12) 0.0242 (12) −0.0065 (10) −0.0147 (11)
C16 0.0652 (15) 0.0573 (15) 0.0348 (12) 0.0259 (13) 0.0006 (11) 0.0071 (11)
C17 0.0490 (12) 0.0405 (12) 0.0419 (12) 0.0041 (10) −0.0013 (10) 0.0059 (10)
C18 0.0597 (16) 0.121 (2) 0.0513 (16) 0.0463 (16) −0.0174 (12) −0.0201 (16)
C19 0.0308 (9) 0.0269 (10) 0.0314 (10) 0.0009 (8) −0.0033 (8) −0.0040 (8)
C20 0.0354 (10) 0.0268 (10) 0.0315 (10) −0.0008 (8) −0.0038 (8) −0.0019 (8)
C21 0.0353 (10) 0.0377 (12) 0.0343 (11) −0.0004 (9) 0.0028 (9) −0.0054 (9)
C22 0.0298 (10) 0.0300 (11) 0.0434 (12) 0.0001 (8) −0.0023 (9) −0.0050 (9)
C23 0.0395 (11) 0.0321 (11) 0.0456 (12) 0.0037 (9) −0.0021 (10) 0.0081 (9)
C24 0.0379 (11) 0.0384 (12) 0.0364 (11) 0.0033 (9) 0.0058 (9) 0.0046 (9)
C25 0.0455 (12) 0.0478 (14) 0.0627 (15) 0.0147 (11) 0.0015 (11) −0.0018 (12)

Geometric parameters (Å, º)

N1—C1 1.366 (2) C14—H14A 0.9500
N1—C19 1.441 (2) C15—C16 1.388 (3)
N1—C12 1.444 (2) C15—C18 1.513 (3)
N2—C9 1.139 (3) C16—C17 1.392 (3)
N3—C10 1.143 (2) C16—H16A 0.9500
N4—C11 1.141 (3) C17—H17A 0.9500
C1—C6 1.409 (3) C18—H18A 0.9800
C1—C2 1.411 (2) C18—H18B 0.9800
C2—C3 1.373 (3) C18—H18C 0.9800
C2—H2A 0.9500 C18—H18D 0.9800
C3—C4 1.404 (3) C18—H18E 0.9800
C3—H3A 0.9500 C18—H18F 0.9800
C4—C5 1.411 (3) C19—C20 1.382 (2)
C4—C7 1.444 (3) C19—C24 1.386 (3)
C5—C6 1.365 (3) C20—C21 1.381 (2)
C5—H5A 0.9500 C20—H20A 0.9500
C6—H6A 0.9500 C21—C22 1.388 (3)
C7—C8 1.359 (3) C21—H21A 0.9500
C7—C9 1.472 (3) C22—C23 1.388 (3)
C8—C11 1.424 (3) C22—C25 1.506 (3)
C8—C10 1.442 (3) C23—C24 1.383 (3)
C12—C13 1.373 (3) C23—H23A 0.9500
C12—C17 1.384 (3) C24—H24A 0.9500
C13—C14 1.387 (3) C25—H25A 0.9800
C13—H13A 0.9500 C25—H25B 0.9800
C14—C15 1.380 (3) C25—H25C 0.9800
C1—N1—C19 123.02 (15) C16—C17—H17A 120.3
C1—N1—C12 120.27 (14) C15—C18—H18A 109.5
C19—N1—C12 116.71 (14) C15—C18—H18B 109.5
N1—C1—C6 121.61 (16) H18A—C18—H18B 109.5
N1—C1—C2 121.09 (16) C15—C18—H18C 109.5
C6—C1—C2 117.29 (17) H18A—C18—H18C 109.5
C3—C2—C1 121.00 (17) H18B—C18—H18C 109.5
C3—C2—H2A 119.5 C15—C18—H18D 109.5
C1—C2—H2A 119.5 H18A—C18—H18D 141.1
C2—C3—C4 121.97 (18) H18B—C18—H18D 56.3
C2—C3—H3A 119.0 H18C—C18—H18D 56.3
C4—C3—H3A 119.0 C15—C18—H18E 109.5
C3—C4—C5 116.52 (17) H18A—C18—H18E 56.3
C3—C4—C7 119.74 (17) H18B—C18—H18E 141.1
C5—C4—C7 123.73 (17) H18C—C18—H18E 56.3
C6—C5—C4 122.11 (18) H18D—C18—H18E 109.5
C6—C5—H5A 118.9 C15—C18—H18F 109.5
C4—C5—H5A 118.9 H18A—C18—H18F 56.3
C5—C6—C1 121.11 (18) H18B—C18—H18F 56.3
C5—C6—H6A 119.4 H18C—C18—H18F 141.1
C1—C6—H6A 119.4 H18D—C18—H18F 109.5
C8—C7—C4 129.64 (18) H18E—C18—H18F 109.5
C8—C7—C9 113.38 (17) C20—C19—C24 119.55 (17)
C4—C7—C9 116.98 (17) C20—C19—N1 119.58 (16)
C7—C8—C11 125.56 (19) C24—C19—N1 120.84 (16)
C7—C8—C10 120.84 (19) C21—C20—C19 119.90 (17)
C11—C8—C10 113.58 (19) C21—C20—H20A 120.0
N2—C9—C7 178.5 (2) C19—C20—H20A 120.0
N3—C10—C8 176.3 (2) C20—C21—C22 121.67 (18)
N4—C11—C8 175.1 (2) C20—C21—H21A 119.2
C13—C12—C17 120.05 (18) C22—C21—H21A 119.2
C13—C12—N1 119.94 (17) C23—C22—C21 117.49 (17)
C17—C12—N1 120.01 (18) C23—C22—C25 120.97 (18)
C12—C13—C14 119.9 (2) C21—C22—C25 121.54 (18)
C12—C13—H13A 120.1 C24—C23—C22 121.65 (18)
C14—C13—H13A 120.1 C24—C23—H23A 119.2
C15—C14—C13 121.5 (2) C22—C23—H23A 119.2
C15—C14—H14A 119.2 C23—C24—C19 119.73 (18)
C13—C14—H14A 119.2 C23—C24—H24A 120.1
C14—C15—C16 117.84 (19) C19—C24—H24A 120.1
C14—C15—C18 121.4 (2) C22—C25—H25A 109.5
C16—C15—C18 120.7 (2) C22—C25—H25B 109.5
C15—C16—C17 121.4 (2) H25A—C25—H25B 109.5
C15—C16—H16A 119.3 C22—C25—H25C 109.5
C17—C16—H16A 119.3 H25A—C25—H25C 109.5
C12—C17—C16 119.3 (2) H25B—C25—H25C 109.5
C12—C17—H17A 120.3
C19—N1—C1—C6 7.9 (3) C19—N1—C12—C17 −103.2 (2)
C12—N1—C1—C6 −172.42 (17) C17—C12—C13—C14 −0.6 (3)
C19—N1—C1—C2 −173.19 (17) N1—C12—C13—C14 178.40 (17)
C12—N1—C1—C2 6.5 (3) C12—C13—C14—C15 0.6 (3)
N1—C1—C2—C3 −178.05 (17) C13—C14—C15—C16 0.2 (3)
C6—C1—C2—C3 0.9 (3) C13—C14—C15—C18 −179.2 (2)
C1—C2—C3—C4 −0.3 (3) C14—C15—C16—C17 −1.0 (3)
C2—C3—C4—C5 −0.2 (3) C18—C15—C16—C17 178.4 (2)
C2—C3—C4—C7 178.70 (17) C13—C12—C17—C16 −0.1 (3)
C3—C4—C5—C6 0.1 (3) N1—C12—C17—C16 −179.13 (17)
C7—C4—C5—C6 −178.76 (18) C15—C16—C17—C12 0.9 (3)
C4—C5—C6—C1 0.5 (3) C1—N1—C19—C20 −122.68 (19)
N1—C1—C6—C5 177.93 (18) C12—N1—C19—C20 57.6 (2)
C2—C1—C6—C5 −1.0 (3) C1—N1—C19—C24 59.2 (2)
C3—C4—C7—C8 −179.8 (2) C12—N1—C19—C24 −120.46 (19)
C5—C4—C7—C8 −1.1 (3) C24—C19—C20—C21 0.1 (3)
C3—C4—C7—C9 0.9 (3) N1—C19—C20—C21 −178.05 (16)
C5—C4—C7—C9 179.71 (18) C19—C20—C21—C22 −0.4 (3)
C4—C7—C8—C11 −0.9 (3) C20—C21—C22—C23 0.1 (3)
C9—C7—C8—C11 178.3 (2) C20—C21—C22—C25 179.62 (18)
C4—C7—C8—C10 177.54 (19) C21—C22—C23—C24 0.5 (3)
C9—C7—C8—C10 −3.2 (3) C25—C22—C23—C24 −178.97 (19)
C1—N1—C12—C13 −101.9 (2) C22—C23—C24—C19 −0.9 (3)
C19—N1—C12—C13 77.7 (2) C20—C19—C24—C23 0.6 (3)
C1—N1—C12—C17 77.1 (2) N1—C19—C24—C23 178.66 (17)

Funding Statement

Research Development Grants and Professional Development Grants from Penn State Scranton (PTP) and inter­nal research grants from Alfaisal University IRG-2020 (MMB) are highly appreciated.

References

  1. Akahane, S., Takeda, T., Hoshino, N. & Akutagawa, T. (2018). Cryst. Growth Des. 18, 6284–6292.
  2. Bian, Y., Liu, Y. & Guo, Y. (2023). Sci. Bull. 68, 975–980. [DOI] [PubMed]
  3. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. El-Nahass, M. M., Zeyada, H. M., Abd-El-Rahman, K. F. & Darwish, A. A. A. (2013). Eur. Phys. J. Appl. Phys. 62, 10202.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hariharan, P. S., Prasad, V. K., Nandi, S., Anoop, A., Moon, D. & Anthony, S. P. (2017). Cryst. Growth Des. 17, 146–155.
  7. Howells, E. R., Lovell, F. M., Rogers, D. & Wilson, A. J. C. (1954). Acta Cryst. 7, 298–299.
  8. Ishi-i, T., Tanaka, H., Youfu, R., Aizawa, N., Yasuda, T., Kato, S. & Matsumoto, T. (2019). New J. Chem. 43, 4998–5010.
  9. Itoo, A. M., Paul, M., Padaga, S. G., Ghosh, B. & Biswas, S. (2022). ACS Omega, 7, 45882–45909. [DOI] [PMC free article] [PubMed]
  10. Khasbaatar, A., Xu, Z., Lee, J.-H., Campillo-Alvarado, G., Hwang, C., Onusaitis, B. N. & Diao, Y. (2023). Chem. Rev. 123, 8395–8487. [DOI] [PubMed]
  11. Kong, Q., Qian, H., Zhou, Y., Li, J. & Xiao, H. (2012). Mater. Chem. Phys. 135, 1048–1056.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Martin, E., Pulham, C. R. & Parsons, S. (2007). CSD Communication (CCDC No. 660790. CCDC, Cambridge, England
  14. Ogunyemi, B. T., Oyeneyin, O. E., Esan, O. T. & Adejoro, I. A. (2020). Results Chem. 2, 100069.
  15. Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1976). Zh. Strukt. Khim., 17, 510.
  16. Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1977). J. Struct. Chem. 17, 438–443.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Sobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967–971.
  20. Song, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940–15941. [DOI] [PubMed]
  21. Tang, X., Liu, W., Wu, J., Lee, C.-S., You, J. & Wang, P. (2010). J. Org. Chem. 75, 7273–7278. [DOI] [PubMed]
  22. Vozzhennikov, V. M., Materikin, V. L. & Kotov, B. V. (1979). Zh. Fiz. Khim. 53, 1580.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005sup1.cif

e-80-00339-sup1.cif (729KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005Isup2.hkl

e-80-00339-Isup2.hkl (332.7KB, hkl)
e-80-00339-Isup3.cml (7.3KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001804/nx2005Isup3.cml

CCDC reference: 2202337

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES