The title compound crystallizes in the centrosymmetric orthorhombic space group Pbca, with 8 molecules in the unit cell. The main feature noticeable in the structure is the impact of the tricyanovinyl (TCV) group in forcing partial planarity of the portion of the molecule carrying the TCV group and directing the molecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell.
Keywords: crystal structure, donor/acceptor, dyes, triphenylamine, tricyanovinyl
Abstract
The title compound, C25H18N4, crystallizes in the centrosymmetric orthorhombic space group Pbca, with eight molecules in the unit cell. The main feature noticeable in the structure is the impact of the tricyanovinyl (TCV) group in forcing partial planarity of the portion of the molecule carrying the TCV group and directing the molecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intramolecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitrogen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC interactions with distances of 2.637 (17) Å.
1. Chemical context
Triphenylamine and its derivatives have been employed in a wide range of applications in materials chemistry. Some of the most exploited applications of this important building block include: hole-transport materials, organic light-emitting diodes, photoconductors, photodiodes, semiconductors, and solar cell applications. The optical properties of triphenylamine derivatives have been explored in optical telecommunications, optical data storage, laser frequency conversion, color displays, and non-linear optics including optical power limiters and multiphoton absorption (Khasbaatar et al., 2023 ▸; Kong et al., 2012 ▸; Itoo et al., 2022 ▸; Bian 2023 ▸). In particular, donor/acceptor molecules incorporating this building block have received considerable attention. Synthetically, many creative and interesting molecular architectures incorporating triphenylamines have been reported (El-Nahass et al., 2013 ▸; Ogunyemi et al., 2020 ▸).
Both molecular design and solid-state structures are important in effectively using molecular materials in the above-mentioned applications. Highly conjugated molecules with delocalized electrons synthesized by systematic modifications allow for access to a wide range of structures. However, the way the molecules are arranged in the solid state, either in thin films or in single crystals, dictates the performance of devices built with these molecular materials. Attention to solid-state structures of organic functional materials has steadily gained momentum. Much more work is still needed in this area to help better understand the competing inter- and intramolecular interactions in determining their solid-state structures. This study focuses on one the impact of the presence of the tricyanovinyl group on the solid-state structure of the title compound, which is also compared with those of closely related structures.
2. Structural commentary
The crystal structure of triphenylamine is known and has been examined several times (Martin et al., 2007 ▸; Sobolev et al., 1985 ▸; Howells et al., 1954 ▸) There are no significant close interactions within the unit cell of triphenylamine except for C—H⋯π with a relatively long distance (2.817Å). We also note that there have been several recent structural reports on triphenylamine derivatives, with various structural features including multicyanoderivatives (Ishi et al., 2019 ▸; Akahane et al., 2018 ▸; Hariharan et al., 2017 ▸; Song et al., 2006 ▸; Tang et al., 2010 ▸).
The closest reported structures to the title compound are the corresponding molecule without the methyl groups tricyanovinyltriphenylamine, which we will refer to as Ph3N-TCV (CYVTPA; Vozzhennikov et al., 1979 ▸; Popova et al., 1976 ▸, 1977 ▸). It is worth mentioning that the title compound forms shiny metallic crystals with large smooth surfaces·We note that, as expected, the title compound adopts a propeller molecular shape and crystallizes in the orthorhombic space group Pbca, similar to Ph3N-TCV. (Fig. 1 ▸) The angles around the central nitrogen atom are all nearly the same, showing similar trends, with the smallest angle between the phenyl groups without the electron-accepting group: 116.71 (14), 120.27 (14), 123.02 (15)° in the title compound Me2-Ph3N-TCV and 116, 121, 123° in Ph3N-TCV, whereas the C—N bond lengths are clearly significantly shorter for the ring bearing the electron acceptor. Almost identical lengths are observed in this structure and Ph3N-TCV: 1.366 (2), 1.441 (2), 1.444 (2) Å in the title compound compared with 1.38, 1.44, 1,44 Å in Ph3N-TCV. The shortest lengths (depicted in italics) are for the N—C bond on the phenyl ring carrying the TCV groups, suggesting, as expected, intramolecular charge transfer (Fig. 2 ▸). The angles around the central nitrogen atom indicate planarity and range from to 116.71 (14) to 123.02 (15)°.
Figure 1.
The molecule in the crystal. Ellipsoids represent 50% probability levels.
Figure 2.
Bond lengths indicating charge-transfer interactions in the title compound.
3. Supramolecular features
In the crystal (Fig. 3 ▸), the molecules form π-stacked dimers involving the acceptor-carrying phenyl rings of two adjacent molecules with a shortest atom-to-atom distance of 3.444 (15) Å, which compares with 3.616 Å in Ph3N-TCV. The dimers are further held together by C—H⋯NC interactions on both ends (Fig. 4 ▸). With distances of 2.637 (17) Å, the interactions in the title compound are slightly weaker than those observed in Ph3N-TCV (2.462 Å).
Figure 3.
Unit cell of the title compound.
Figure 4.
π-Stacking and C—H⋯N interactions in the title compound.
4. Database survey
A survey of the Cambridge Structural Database (CSD; Groom et al., 2016 ▸) in February 2024 revealed more than 30 hits each for ‘triphenylamine’ and ‘tricyanovinyl’. No hits were found for the title compound. The closely related structure for a similar compound without the methyl groups (Popova et al., 1977 ▸) is compared with the title compound above.
5. Synthesis and crystallization
N,N-p-ditolylaniline (Aldrich, 0.5 mmol) was reacted with tetracyanoethylene (TCNE, Aldrich, 0.75 mmol) in DMF (5 mL) in a 25 mL round-bottom flask at room temperature. After 2 h the reaction was worked out either by addition of 6 M HCl or extraction by methylene chloride. The product was isolated as a purple solid, m.p. 462–463 K, and crystallized by slow evaporation from acetonitrile. 1H NMR, ppm: 7.13 (d, 6H); 7.15 (d, 4H); 7.30 (d, 2H); 2.32 (s, 6H).
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1 ▸. H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-methyl).
Table 1. Experimental details.
| Crystal data | |
| Chemical formula | C25H18N4 |
| M r | 374.43 |
| Crystal system, space group | Orthorhombic, P b c a |
| Temperature (K) | 173 |
| a, b, c (Å) | 16.8662 (15), 12.8555 (11), 18.7561 (16) |
| V (Å3) | 4066.8 (6) |
| Z | 8 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.07 |
| Crystal size (mm) | 0.35 × 0.32 × 0.03 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.975, 0.998 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 23265, 4170, 2586 |
| R int | 0.057 |
| (sin θ/λ)max (Å−1) | 0.626 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.048, 0.125, 1.02 |
| No. of reflections | 4170 |
| No. of parameters | 264 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.39, −0.19 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024001804/nx2005Isup3.cml
CCDC reference: 2202337
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors also acknowledge Dr Victor Young Jr of the X-ray Crystallographic Laboratory, Department of Chemistry at the University of Minnesota for the data collection.
supplementary crystallographic information
Crystal data
| C25H18N4 | Dx = 1.223 Mg m−3 |
| Mr = 374.43 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbca | Cell parameters from 2998 reflections |
| a = 16.8662 (15) Å | θ = 2.2–24.6° |
| b = 12.8555 (11) Å | µ = 0.07 mm−1 |
| c = 18.7561 (16) Å | T = 173 K |
| V = 4066.8 (6) Å3 | Plate, red |
| Z = 8 | 0.35 × 0.32 × 0.03 mm |
| F(000) = 1568 |
Data collection
| Bruker APEXII CCD diffractometer | 2586 reflections with I > 2σ(I) |
| Radiation source: sealed tube | Rint = 0.057 |
| φ and ω scans | θmax = 26.4°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −21→21 |
| Tmin = 0.975, Tmax = 0.998 | k = −15→16 |
| 23265 measured reflections | l = −23→13 |
| 4170 independent reflections |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
| wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.047P)2 + 1.2157P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.02 | (Δ/σ)max < 0.001 |
| 4170 reflections | Δρmax = 0.39 e Å−3 |
| 264 parameters | Δρmin = −0.19 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| N1 | 0.54561 (9) | 0.35769 (12) | 0.25270 (8) | 0.0327 (4) | |
| N2 | 0.40435 (13) | 0.75779 (16) | 0.48843 (10) | 0.0608 (6) | |
| N3 | 0.56270 (11) | 0.81259 (15) | 0.62522 (10) | 0.0520 (5) | |
| N4 | 0.71782 (13) | 0.57500 (19) | 0.55835 (12) | 0.0784 (7) | |
| C1 | 0.54228 (11) | 0.42447 (14) | 0.30928 (10) | 0.0309 (4) | |
| C2 | 0.47659 (11) | 0.49077 (14) | 0.31939 (10) | 0.0341 (4) | |
| H2A | 0.433200 | 0.487458 | 0.287170 | 0.041* | |
| C3 | 0.47442 (12) | 0.56000 (15) | 0.37507 (10) | 0.0360 (5) | |
| H3A | 0.429465 | 0.603864 | 0.380322 | 0.043* | |
| C4 | 0.53662 (11) | 0.56791 (14) | 0.42448 (10) | 0.0331 (4) | |
| C5 | 0.60170 (11) | 0.50065 (15) | 0.41415 (10) | 0.0380 (5) | |
| H5A | 0.644920 | 0.503697 | 0.446554 | 0.046* | |
| C6 | 0.60455 (11) | 0.43136 (15) | 0.35909 (10) | 0.0367 (5) | |
| H6A | 0.649299 | 0.387029 | 0.354280 | 0.044* | |
| C7 | 0.53210 (12) | 0.64360 (15) | 0.48125 (10) | 0.0359 (5) | |
| C8 | 0.58477 (12) | 0.66465 (15) | 0.53418 (11) | 0.0402 (5) | |
| C9 | 0.46017 (13) | 0.70824 (16) | 0.48442 (10) | 0.0401 (5) | |
| C10 | 0.57010 (12) | 0.74718 (17) | 0.58452 (11) | 0.0418 (5) | |
| C11 | 0.65825 (14) | 0.61249 (18) | 0.54528 (12) | 0.0487 (6) | |
| C12 | 0.48557 (11) | 0.36131 (14) | 0.19788 (9) | 0.0319 (4) | |
| C13 | 0.42598 (12) | 0.28855 (16) | 0.19709 (11) | 0.0408 (5) | |
| H13A | 0.424981 | 0.234803 | 0.231836 | 0.049* | |
| C14 | 0.36727 (13) | 0.29368 (18) | 0.14546 (12) | 0.0491 (6) | |
| H14A | 0.326013 | 0.243369 | 0.145631 | 0.059* | |
| C15 | 0.36736 (13) | 0.37017 (19) | 0.09383 (11) | 0.0479 (6) | |
| C16 | 0.42856 (14) | 0.44230 (18) | 0.09488 (11) | 0.0524 (6) | |
| H16A | 0.430298 | 0.495020 | 0.059426 | 0.063* | |
| C17 | 0.48744 (13) | 0.43899 (16) | 0.14681 (11) | 0.0438 (5) | |
| H17A | 0.528520 | 0.489550 | 0.147200 | 0.053* | |
| C18 | 0.30260 (15) | 0.3765 (2) | 0.03817 (13) | 0.0773 (9) | |
| H18A | 0.279705 | 0.307222 | 0.030804 | 0.116* | 0.5 |
| H18B | 0.324991 | 0.401877 | −0.006783 | 0.116* | 0.5 |
| H18C | 0.261172 | 0.424333 | 0.054453 | 0.116* | 0.5 |
| H18D | 0.297540 | 0.448399 | 0.021512 | 0.116* | 0.5 |
| H18E | 0.252254 | 0.353745 | 0.059098 | 0.116* | 0.5 |
| H18F | 0.316073 | 0.331288 | −0.002137 | 0.116* | 0.5 |
| C19 | 0.60719 (10) | 0.28093 (14) | 0.24428 (10) | 0.0297 (4) | |
| C20 | 0.65333 (10) | 0.28135 (14) | 0.18337 (10) | 0.0313 (4) | |
| H20A | 0.645477 | 0.333290 | 0.148039 | 0.038* | |
| C21 | 0.71086 (11) | 0.20612 (15) | 0.17394 (10) | 0.0358 (5) | |
| H21A | 0.741966 | 0.206892 | 0.131715 | 0.043* | |
| C22 | 0.72438 (11) | 0.12945 (14) | 0.22459 (10) | 0.0344 (5) | |
| C23 | 0.67765 (11) | 0.13075 (15) | 0.28548 (11) | 0.0391 (5) | |
| H23A | 0.685992 | 0.079460 | 0.321166 | 0.047* | |
| C24 | 0.61923 (11) | 0.20484 (15) | 0.29552 (11) | 0.0376 (5) | |
| H24A | 0.587496 | 0.203584 | 0.337350 | 0.045* | |
| C25 | 0.78680 (13) | 0.04717 (17) | 0.21395 (13) | 0.0520 (6) | |
| H25A | 0.799588 | 0.041696 | 0.163120 | 0.078* | |
| H25B | 0.766801 | −0.019848 | 0.231175 | 0.078* | |
| H25C | 0.834624 | 0.066109 | 0.240628 | 0.078* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0356 (9) | 0.0306 (9) | 0.0321 (9) | 0.0070 (7) | −0.0031 (7) | −0.0046 (7) |
| N2 | 0.0746 (14) | 0.0627 (13) | 0.0451 (12) | 0.0302 (12) | −0.0004 (10) | −0.0061 (10) |
| N3 | 0.0542 (12) | 0.0501 (12) | 0.0516 (12) | −0.0003 (9) | 0.0070 (9) | −0.0149 (10) |
| N4 | 0.0614 (14) | 0.0978 (18) | 0.0760 (16) | 0.0188 (13) | −0.0223 (12) | −0.0394 (14) |
| C1 | 0.0368 (10) | 0.0253 (10) | 0.0306 (10) | 0.0008 (8) | 0.0011 (8) | 0.0027 (8) |
| C2 | 0.0379 (10) | 0.0318 (11) | 0.0327 (10) | 0.0059 (9) | −0.0030 (9) | 0.0007 (9) |
| C3 | 0.0414 (11) | 0.0307 (11) | 0.0358 (11) | 0.0083 (9) | 0.0019 (9) | 0.0019 (9) |
| C4 | 0.0428 (11) | 0.0269 (10) | 0.0297 (10) | 0.0013 (9) | 0.0041 (8) | 0.0020 (8) |
| C5 | 0.0387 (11) | 0.0431 (12) | 0.0323 (11) | 0.0028 (9) | −0.0047 (9) | −0.0040 (9) |
| C6 | 0.0359 (10) | 0.0396 (12) | 0.0347 (11) | 0.0085 (9) | −0.0029 (9) | −0.0041 (9) |
| C7 | 0.0451 (11) | 0.0314 (11) | 0.0312 (11) | −0.0021 (9) | 0.0034 (9) | 0.0050 (8) |
| C8 | 0.0450 (12) | 0.0358 (12) | 0.0396 (12) | 0.0010 (10) | 0.0041 (9) | −0.0019 (9) |
| C9 | 0.0551 (13) | 0.0352 (12) | 0.0301 (11) | 0.0061 (11) | −0.0014 (10) | −0.0005 (9) |
| C10 | 0.0459 (12) | 0.0398 (12) | 0.0398 (12) | −0.0044 (10) | 0.0080 (10) | −0.0038 (10) |
| C11 | 0.0493 (14) | 0.0481 (14) | 0.0486 (14) | 0.0057 (11) | −0.0028 (11) | −0.0173 (11) |
| C12 | 0.0361 (10) | 0.0312 (11) | 0.0285 (10) | 0.0083 (9) | −0.0021 (8) | −0.0038 (8) |
| C13 | 0.0434 (11) | 0.0406 (12) | 0.0385 (12) | 0.0026 (10) | −0.0042 (9) | 0.0004 (9) |
| C14 | 0.0419 (12) | 0.0553 (15) | 0.0502 (14) | 0.0016 (11) | −0.0068 (10) | −0.0124 (11) |
| C15 | 0.0430 (12) | 0.0658 (16) | 0.0348 (12) | 0.0242 (12) | −0.0065 (10) | −0.0147 (11) |
| C16 | 0.0652 (15) | 0.0573 (15) | 0.0348 (12) | 0.0259 (13) | 0.0006 (11) | 0.0071 (11) |
| C17 | 0.0490 (12) | 0.0405 (12) | 0.0419 (12) | 0.0041 (10) | −0.0013 (10) | 0.0059 (10) |
| C18 | 0.0597 (16) | 0.121 (2) | 0.0513 (16) | 0.0463 (16) | −0.0174 (12) | −0.0201 (16) |
| C19 | 0.0308 (9) | 0.0269 (10) | 0.0314 (10) | 0.0009 (8) | −0.0033 (8) | −0.0040 (8) |
| C20 | 0.0354 (10) | 0.0268 (10) | 0.0315 (10) | −0.0008 (8) | −0.0038 (8) | −0.0019 (8) |
| C21 | 0.0353 (10) | 0.0377 (12) | 0.0343 (11) | −0.0004 (9) | 0.0028 (9) | −0.0054 (9) |
| C22 | 0.0298 (10) | 0.0300 (11) | 0.0434 (12) | 0.0001 (8) | −0.0023 (9) | −0.0050 (9) |
| C23 | 0.0395 (11) | 0.0321 (11) | 0.0456 (12) | 0.0037 (9) | −0.0021 (10) | 0.0081 (9) |
| C24 | 0.0379 (11) | 0.0384 (12) | 0.0364 (11) | 0.0033 (9) | 0.0058 (9) | 0.0046 (9) |
| C25 | 0.0455 (12) | 0.0478 (14) | 0.0627 (15) | 0.0147 (11) | 0.0015 (11) | −0.0018 (12) |
Geometric parameters (Å, º)
| N1—C1 | 1.366 (2) | C14—H14A | 0.9500 |
| N1—C19 | 1.441 (2) | C15—C16 | 1.388 (3) |
| N1—C12 | 1.444 (2) | C15—C18 | 1.513 (3) |
| N2—C9 | 1.139 (3) | C16—C17 | 1.392 (3) |
| N3—C10 | 1.143 (2) | C16—H16A | 0.9500 |
| N4—C11 | 1.141 (3) | C17—H17A | 0.9500 |
| C1—C6 | 1.409 (3) | C18—H18A | 0.9800 |
| C1—C2 | 1.411 (2) | C18—H18B | 0.9800 |
| C2—C3 | 1.373 (3) | C18—H18C | 0.9800 |
| C2—H2A | 0.9500 | C18—H18D | 0.9800 |
| C3—C4 | 1.404 (3) | C18—H18E | 0.9800 |
| C3—H3A | 0.9500 | C18—H18F | 0.9800 |
| C4—C5 | 1.411 (3) | C19—C20 | 1.382 (2) |
| C4—C7 | 1.444 (3) | C19—C24 | 1.386 (3) |
| C5—C6 | 1.365 (3) | C20—C21 | 1.381 (2) |
| C5—H5A | 0.9500 | C20—H20A | 0.9500 |
| C6—H6A | 0.9500 | C21—C22 | 1.388 (3) |
| C7—C8 | 1.359 (3) | C21—H21A | 0.9500 |
| C7—C9 | 1.472 (3) | C22—C23 | 1.388 (3) |
| C8—C11 | 1.424 (3) | C22—C25 | 1.506 (3) |
| C8—C10 | 1.442 (3) | C23—C24 | 1.383 (3) |
| C12—C13 | 1.373 (3) | C23—H23A | 0.9500 |
| C12—C17 | 1.384 (3) | C24—H24A | 0.9500 |
| C13—C14 | 1.387 (3) | C25—H25A | 0.9800 |
| C13—H13A | 0.9500 | C25—H25B | 0.9800 |
| C14—C15 | 1.380 (3) | C25—H25C | 0.9800 |
| C1—N1—C19 | 123.02 (15) | C16—C17—H17A | 120.3 |
| C1—N1—C12 | 120.27 (14) | C15—C18—H18A | 109.5 |
| C19—N1—C12 | 116.71 (14) | C15—C18—H18B | 109.5 |
| N1—C1—C6 | 121.61 (16) | H18A—C18—H18B | 109.5 |
| N1—C1—C2 | 121.09 (16) | C15—C18—H18C | 109.5 |
| C6—C1—C2 | 117.29 (17) | H18A—C18—H18C | 109.5 |
| C3—C2—C1 | 121.00 (17) | H18B—C18—H18C | 109.5 |
| C3—C2—H2A | 119.5 | C15—C18—H18D | 109.5 |
| C1—C2—H2A | 119.5 | H18A—C18—H18D | 141.1 |
| C2—C3—C4 | 121.97 (18) | H18B—C18—H18D | 56.3 |
| C2—C3—H3A | 119.0 | H18C—C18—H18D | 56.3 |
| C4—C3—H3A | 119.0 | C15—C18—H18E | 109.5 |
| C3—C4—C5 | 116.52 (17) | H18A—C18—H18E | 56.3 |
| C3—C4—C7 | 119.74 (17) | H18B—C18—H18E | 141.1 |
| C5—C4—C7 | 123.73 (17) | H18C—C18—H18E | 56.3 |
| C6—C5—C4 | 122.11 (18) | H18D—C18—H18E | 109.5 |
| C6—C5—H5A | 118.9 | C15—C18—H18F | 109.5 |
| C4—C5—H5A | 118.9 | H18A—C18—H18F | 56.3 |
| C5—C6—C1 | 121.11 (18) | H18B—C18—H18F | 56.3 |
| C5—C6—H6A | 119.4 | H18C—C18—H18F | 141.1 |
| C1—C6—H6A | 119.4 | H18D—C18—H18F | 109.5 |
| C8—C7—C4 | 129.64 (18) | H18E—C18—H18F | 109.5 |
| C8—C7—C9 | 113.38 (17) | C20—C19—C24 | 119.55 (17) |
| C4—C7—C9 | 116.98 (17) | C20—C19—N1 | 119.58 (16) |
| C7—C8—C11 | 125.56 (19) | C24—C19—N1 | 120.84 (16) |
| C7—C8—C10 | 120.84 (19) | C21—C20—C19 | 119.90 (17) |
| C11—C8—C10 | 113.58 (19) | C21—C20—H20A | 120.0 |
| N2—C9—C7 | 178.5 (2) | C19—C20—H20A | 120.0 |
| N3—C10—C8 | 176.3 (2) | C20—C21—C22 | 121.67 (18) |
| N4—C11—C8 | 175.1 (2) | C20—C21—H21A | 119.2 |
| C13—C12—C17 | 120.05 (18) | C22—C21—H21A | 119.2 |
| C13—C12—N1 | 119.94 (17) | C23—C22—C21 | 117.49 (17) |
| C17—C12—N1 | 120.01 (18) | C23—C22—C25 | 120.97 (18) |
| C12—C13—C14 | 119.9 (2) | C21—C22—C25 | 121.54 (18) |
| C12—C13—H13A | 120.1 | C24—C23—C22 | 121.65 (18) |
| C14—C13—H13A | 120.1 | C24—C23—H23A | 119.2 |
| C15—C14—C13 | 121.5 (2) | C22—C23—H23A | 119.2 |
| C15—C14—H14A | 119.2 | C23—C24—C19 | 119.73 (18) |
| C13—C14—H14A | 119.2 | C23—C24—H24A | 120.1 |
| C14—C15—C16 | 117.84 (19) | C19—C24—H24A | 120.1 |
| C14—C15—C18 | 121.4 (2) | C22—C25—H25A | 109.5 |
| C16—C15—C18 | 120.7 (2) | C22—C25—H25B | 109.5 |
| C15—C16—C17 | 121.4 (2) | H25A—C25—H25B | 109.5 |
| C15—C16—H16A | 119.3 | C22—C25—H25C | 109.5 |
| C17—C16—H16A | 119.3 | H25A—C25—H25C | 109.5 |
| C12—C17—C16 | 119.3 (2) | H25B—C25—H25C | 109.5 |
| C12—C17—H17A | 120.3 | ||
| C19—N1—C1—C6 | 7.9 (3) | C19—N1—C12—C17 | −103.2 (2) |
| C12—N1—C1—C6 | −172.42 (17) | C17—C12—C13—C14 | −0.6 (3) |
| C19—N1—C1—C2 | −173.19 (17) | N1—C12—C13—C14 | 178.40 (17) |
| C12—N1—C1—C2 | 6.5 (3) | C12—C13—C14—C15 | 0.6 (3) |
| N1—C1—C2—C3 | −178.05 (17) | C13—C14—C15—C16 | 0.2 (3) |
| C6—C1—C2—C3 | 0.9 (3) | C13—C14—C15—C18 | −179.2 (2) |
| C1—C2—C3—C4 | −0.3 (3) | C14—C15—C16—C17 | −1.0 (3) |
| C2—C3—C4—C5 | −0.2 (3) | C18—C15—C16—C17 | 178.4 (2) |
| C2—C3—C4—C7 | 178.70 (17) | C13—C12—C17—C16 | −0.1 (3) |
| C3—C4—C5—C6 | 0.1 (3) | N1—C12—C17—C16 | −179.13 (17) |
| C7—C4—C5—C6 | −178.76 (18) | C15—C16—C17—C12 | 0.9 (3) |
| C4—C5—C6—C1 | 0.5 (3) | C1—N1—C19—C20 | −122.68 (19) |
| N1—C1—C6—C5 | 177.93 (18) | C12—N1—C19—C20 | 57.6 (2) |
| C2—C1—C6—C5 | −1.0 (3) | C1—N1—C19—C24 | 59.2 (2) |
| C3—C4—C7—C8 | −179.8 (2) | C12—N1—C19—C24 | −120.46 (19) |
| C5—C4—C7—C8 | −1.1 (3) | C24—C19—C20—C21 | 0.1 (3) |
| C3—C4—C7—C9 | 0.9 (3) | N1—C19—C20—C21 | −178.05 (16) |
| C5—C4—C7—C9 | 179.71 (18) | C19—C20—C21—C22 | −0.4 (3) |
| C4—C7—C8—C11 | −0.9 (3) | C20—C21—C22—C23 | 0.1 (3) |
| C9—C7—C8—C11 | 178.3 (2) | C20—C21—C22—C25 | 179.62 (18) |
| C4—C7—C8—C10 | 177.54 (19) | C21—C22—C23—C24 | 0.5 (3) |
| C9—C7—C8—C10 | −3.2 (3) | C25—C22—C23—C24 | −178.97 (19) |
| C1—N1—C12—C13 | −101.9 (2) | C22—C23—C24—C19 | −0.9 (3) |
| C19—N1—C12—C13 | 77.7 (2) | C20—C19—C24—C23 | 0.6 (3) |
| C1—N1—C12—C17 | 77.1 (2) | N1—C19—C24—C23 | 178.66 (17) |
Funding Statement
Research Development Grants and Professional Development Grants from Penn State Scranton (PTP) and internal research grants from Alfaisal University IRG-2020 (MMB) are highly appreciated.
References
- Akahane, S., Takeda, T., Hoshino, N. & Akutagawa, T. (2018). Cryst. Growth Des. 18, 6284–6292.
- Bian, Y., Liu, Y. & Guo, Y. (2023). Sci. Bull. 68, 975–980. [DOI] [PubMed]
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Nahass, M. M., Zeyada, H. M., Abd-El-Rahman, K. F. & Darwish, A. A. A. (2013). Eur. Phys. J. Appl. Phys. 62, 10202.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hariharan, P. S., Prasad, V. K., Nandi, S., Anoop, A., Moon, D. & Anthony, S. P. (2017). Cryst. Growth Des. 17, 146–155.
- Howells, E. R., Lovell, F. M., Rogers, D. & Wilson, A. J. C. (1954). Acta Cryst. 7, 298–299.
- Ishi-i, T., Tanaka, H., Youfu, R., Aizawa, N., Yasuda, T., Kato, S. & Matsumoto, T. (2019). New J. Chem. 43, 4998–5010.
- Itoo, A. M., Paul, M., Padaga, S. G., Ghosh, B. & Biswas, S. (2022). ACS Omega, 7, 45882–45909. [DOI] [PMC free article] [PubMed]
- Khasbaatar, A., Xu, Z., Lee, J.-H., Campillo-Alvarado, G., Hwang, C., Onusaitis, B. N. & Diao, Y. (2023). Chem. Rev. 123, 8395–8487. [DOI] [PubMed]
- Kong, Q., Qian, H., Zhou, Y., Li, J. & Xiao, H. (2012). Mater. Chem. Phys. 135, 1048–1056.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Martin, E., Pulham, C. R. & Parsons, S. (2007). CSD Communication (CCDC No. 660790. CCDC, Cambridge, England
- Ogunyemi, B. T., Oyeneyin, O. E., Esan, O. T. & Adejoro, I. A. (2020). Results Chem. 2, 100069.
- Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1976). Zh. Strukt. Khim., 17, 510.
- Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1977). J. Struct. Chem. 17, 438–443.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Sobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967–971.
- Song, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940–15941. [DOI] [PubMed]
- Tang, X., Liu, W., Wu, J., Lee, C.-S., You, J. & Wang, P. (2010). J. Org. Chem. 75, 7273–7278. [DOI] [PubMed]
- Vozzhennikov, V. M., Materikin, V. L. & Kotov, B. V. (1979). Zh. Fiz. Khim. 53, 1580.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001804/nx2005Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024001804/nx2005Isup3.cml
CCDC reference: 2202337
Additional supporting information: crystallographic information; 3D view; checkCIF report




