Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 27;80(Pt 3):335–338. doi: 10.1107/S205698902400166X

Crystal structure of tetra­kis­(μ-2-hy­droxy-3,5-di­isoprop­yl­benzoato)bis­[(dimethyl sulfoxide)copper(II)]

Daniel G Shlian a, Rachael H Summers b, Katelyn Martinez b, Rita K Upmacis b,*
Editor: S P Kelleyc
PMCID: PMC10915660  PMID: 38456058

A solution of 2-hy­droxy-3,5-bis­(1-methyl­eth­yl)benzoic acid copper(II) hydrate (C26H34CuO6·xH2O), also known as copper(II) 3,5-diiso­propyl­salicylate hydrate, in dimethyl sulfoxide (DMSO) affords crystals of tetra­kis-3,5-diiso­propyl­salicylatobis-di­methyl­sulfoxido­dicopper(II), [Cu(II)2(3,5-DIPS)4(DMSO)2], upon evaporation. The structure has an empirical formula of [Cu2(C13H17O3)4(C2H6OS)2] and consists of a centrosymmetric binuclear copper complex surrounded by four 3,5-diiso­propyl­salicylate ligands. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement.

Keywords: crystal structure; binuclear copper; 3,5-diiso­propyl­salicylate; dimethyl sulfoxide.

Abstract

Metal complexes of 3,5-diiso­propyl­salicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diiso­propyl­salicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hy­droxy group of the diiso­propyl­salicylate ligands participates in intra­molecular O—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

A variety of binuclear CuII complexes bound to carboxyl­ate moieties and donor ligands are known (Doedens, 1976). These include, for instance, CuII complexes with di­alkyl­salicylates (Morgant et al., 2000; Benisvy et al., 2006; Seguin et al., 2021) and non-steroidal anti-inflammatory drugs (NSAIDs) (Dendrinou-Samara et al., 1990; Kovala-Demertzi et al., 1997; Guessous et al., 1998; Greenaway et al., 1999; Viossat et al., 2003, 2005). With regard to CuII complexes with di­alkyl­salicylates, several complexes containing 3,5-diiso­propyl­salicylate (3,5-DIPS) of the type [Cu(II)2(3,5-DIPS)4(L)2], in which L is a donor mol­ecule, are known and have been characterized by electron paramagnetic resonance (EPR), infrared (IR) and ultraviolet–visible (UV–Vis) spectroscopies (Greenaway et al., 1988). However, compounds featuring dimethyl formamide (DMF) and di­ethyl­ether giving rise to [Cu(II)2(3,5-DIPS)4(DMF)2] and [Cu(II)2(3,5-DIPS)4(OEt2)2], respectively, have been characterized by X-ray diffraction (Morgant et al., 2000).

In contrast to the binuclear structures of these copper compounds, the structure of the zinc counterpart that is obtained from dimethyl sulfoxide (DMSO) is mononuclear, [Zn(II)(3,5-DIPS)2(DMSO)2], as determined by X-ray crystallography (Morgant et al., 1998). Since CuII and ZnII complexes of 3,5-DIPS are of inter­est because they inhibit polymorphonuclear leukocyte oxidative metabolism in vitro and have anti­convulsant activity (Morgant et al., 1998, 2000), it is pertinent to determine the structure of the corresponding copper complex. Therefore, herein, we describe the X-ray crystallography structure of the binuclear copper complex, [Cu(II)2(3,5-DIPS)4(DMSO)2], which is obtained from a solution of copper(II) 3,5-diiso­propyl­salicylate hydrate in DMSO. 1.

2. Structural commentary

The structure of [Cu(II)2(3,5-DIPS)4(DMSO)2], shown in Fig. 1, reveals that the compound is a centrosymmetric binuclear complex containing two copper atoms, with a Cu⋯Cu distance of 2.6170 (7) Å, that are bridged by four 3,5-diiso­propyl­salicylate (DIPS) ligands. The inter­nal symmetry element (inversion center) allows for half of the complex to be represented in the asymmetric unit. As found with other [Cu(II)(3,5-DIPS)] compounds, the OH moiety attached to the aromatic ring is not involved in bonding to the copper centers (Ranford et al., 1993; Morgant et al., 2000). Each Cu atom forms an almost square-planar geometry with four oxygen atoms from the carboxyl­ate groups of the 3,5-DIPS moieties, with Cu—O distances ranging between 1.958 (2) and 1.972 (2) Å. The O—Cu—O angles range from 88.12 (9) to 90.21 (9)° for cis and 168.77 (7) to 168.80 (8)° for trans positions, indicating that the arrangement is close to an idealized square-planar geometry.

Figure 1.

Figure 1

Crystal structure of [Cu(II)2(3,5-DIPS)4(DMSO)2]. For clarity, hydrogen atoms on carbon have been omitted. The OH group is disordered over two sites on each aromatic ring, namely C13/C17 and C33/C37, with site occupancy ratios of 0.723 (6):0.277 (6) and 0.859 (5):0.141 (5), respectively; for clarity, only the major component with its hydrogen-bonding inter­actions is illustrated. Displacement ellipsoids are shown at the 30% probability level.

Each Cu atom is also capped by a DMSO ligand in the apical position with a Cu—OSMe2 distance of 2.1226 (19) Å leading to a square-pyramidal arrangement. The O11—Cu—OSMe2, O12—Cu—OSMe2, O31—Cu—OSMe2 and O32—Cu—OSMe2 angles range from 95.41 (8) to 95.79 (7)°, indicating a slight deviation from the 90° angle expected for an idealized square-pyramidal arrangement. In accord with this description, the τ5 geometry index (Addison et al., 1984) for the [CuO5] moiety is close to zero (0.00005); for reference, a τ5 geometry index of 0.00 corresponds to a square-pyramidal geometry while a value of 1.00 corresponds to an idealized trigonal–bipyramidal geometry (Addison et al., 1984; Palmer & Parkin, 2014).

The OH group is disordered over two sites on each aromatic ring, namely C13/C17 and C33/C37, with site occupancy ratios of 0.723 (6):0.277 (6) and 0.859 (5):0.141 (5), respectively. This type of disorder has previously been observed for other [Cu(II)(3,5-DIPS)] compounds, such as [Cu(II)2(3,5-DIPS)4(DMF)2] and mononuclear [Cu(II)(3,5-DIPS)2(1,10-phenanthroline)] (Morgant et al., 2000; Ranford et al., 1993). For comparison, the OH group disorder for [Cu(II)2(3,5-DIPS)4(DMF)2] occurs in a 64:36 ratio for each 3,5-DIPS ligand (Morgant et al., 2000), while for the mononuclear Cu structure containing 1,10-phenanthroline, the disorder occurs in a 60:40 ratio (Ranford et al., 1993).

3. Supra­molecular features

Fig. 2 shows the packing in the unit cell. There are no significant inter­molecular inter­actions. However, the structure displays hydrogen-bonding inter­actions within the mol­ecule, which are those between the aromatic OH groups and an oxygen atom of the carboxyl­ate group within the 3,5-DIPS ligand. The hydrogen bond O—H⋯O distances and angles for O13—H⋯O11, O13A—H⋯O12, O33—H⋯O31 and O33A—H⋯O32 are reported in Table 1. As a result of the OH disorder observed, there are two O—H⋯O distances recorded for each aromatic ring.

Figure 2.

Figure 2

Unit-cell packing diagram of [Cu(II)2(3,5-DIPS)4(DMSO)2].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13B⋯O11 0.75 (3) 1.91 (3) 2.568 (4) 147 (4)
O13A—H13C⋯O12 0.75 (3) 1.90 (4) 2.458 (8) 131 (4)
O33—H33B⋯O31 0.74 (3) 1.90 (3) 2.567 (3) 149 (4)
O33A—H33C⋯O32 0.75 (4) 1.90 (4) 2.511 (14) 138 (5)

The intra­molecular hydrogen-bond distances and angles reported in Table 1 are within the typical range of other reported [Cu(II)2(3,5-DIPS)4(L)2] compounds. For instance, the hydrogen-bond O—H⋯O distances and angles reported for [Cu(II)2(3,5-DIPS)4(DMF)2] range from 2.493 (4) to 2.559 (4) Å and 137.0 to 147.6°, respectively (Morgant et al., 2000).

Similar intra­molecular hydrogen-bond O—H⋯O distances and angles are also reported for related binuclear copper(II) compounds containing 3,5-diiso­butyl­salicylate (3,5-DIBS) that also bear a ring mol­ecule with ortho carb­oxy­lic and alcohol functional groups. For example, [Cu(II)2(3,5-DIBS)4(CH3OH)2] displays intra­molecular hydrogen-bond O—H⋯O distances ranging from 2.575 (6) to 2.565 (6) Å, and O—H⋯O angles between 131 and 146° (Benisvy et al., 2006).

4. Database survey

Crystal structures of 3,5-diiso­propyl­salicylate copper(II) complexes bound to additional axial donors (L) of the form [Cu(II)2(3,5-DIPS)4(L)2] are known, and include the DMF and di­ethyl­ether ligated compounds (Morgant et al., 2000). The title compound, as well as others containing different solvent mol­ecules, such as the di­aqua variant, have been previously characterized as [Cu(II)2(3,5-DIPS)4(L)2] compounds, but crystal structures were not published (Greenaway et al., 1988; Ranford et al., 1993).

Other ternary CuII complexes containing solvents bound in the axial positions where 3,5-DIPS is replaced by non-steroidal anti-inflammatory drugs (NSAIDs) of the form [Cu(II)2(NSAID)4(L)2] are also known. These include: [Cu(II)2(naproxen)4(DMSO)2] (Dendrinou-Samara et al., 1990); [Cu(II)2(diclofenac)4(DMF)2] (Kovala-Demertzi et al., 1997); [Cu(II)2(indomethacinate)4(DMF)2] (Guessous et al., 1998); [Cu(II)2(niflumate)4(DMSO)2] (Greenaway et al., 1999); [Cu(II)2(aspirinate)4(DMSO)2] (Viossat et al., 2003) and [Cu(II)2(niflumate)4(H2O)2·4DMA] (DMA = di­methyl­acetamide; Viossat et al., 2005). Notably, the title compound has similar structural features to previously characterized NSAID analogs (Table 2).

Table 2. Comparison of selected structural characteristics (Å, °) of ternary CuII complexes with various axial ligands (L = DMSO, DMF, OEt2, H2O).

Compound Cu⋯Cu C—O (basal) C—O (axial) Cu—O—C O—C—O Reference
[Cu(II)2(naproxen)4(DMSO)2] 2.629 (1) 1.995 (4) 1.958 (4) 2.155 (5) 2.123 (5) 123.1 (4) 121.7 (4) 125.7 (5) 126.2 (5) Dendrinou-Samara et al. (1990)
[Cu(II)2(diclofenac)4(DMF)2] 2.6265 (8) 1.981 (2) 1.953 (2) 2.122 (2) 124.7 (2) 121.2 (2) 125.5 (3) Kovala-Demertzi et al. (1997)
[Cu(II)2(indomethacinate)4(DMF)2] 2.629 (2) 1.956 (7) 1.967 (7) 2.154 (6) 122.3 (6) 123.6 (6) 125.1 (9) 125.9 (8) Guessous et al. (1998)
[Cu(II)2(niflumate)4(DMSO)2] 2.6272 (5) 1.952 (2) 1.968 (2) 2.152 (2) 117.2 (2) 130.5 (2) 123.8 (2) 124.1 (2) Greenaway et al. (1999)
[Cu(II)2(3,5-DIPS)4(DMF)2] 2.6139 (9) 1.950 (2) 1.967 (2) 2.129 (2) 121.9 (2) 125.29 (2) 123.8 (3) 123.9 (3) Morgant et al. (2000)
[Cu(II)2(3,5-DIPS)4(OEt)2] 2.613 (1) 1.948 (3) 1.957 (3) 2.230 (3) 119.7 (3) 127.0 (3) 124.0 (4) 124.1 (4) Morgant et al. (2000)
[Cu(II)2(aspirinate)4(DMF)2] 2.6154 (4) 1.953 (1) 1.971 (1) 2.154 (1) 119.(1) 125.2 (1) 125.7 (2) 125.8 (2) Viossat et al. (2003)
[Cu(II)2(niflumate)4(H2O)2]·4DMA 2.6439 (7) 1.952 (2) 1.970 (2) 2.128 (2) 120.9 (2) 127.2 (2) 123.8 (3) 124.6 (3) Viossat et al. (2005)
[Cu(II)2(3,5-DIPS)4(DMSO)2] 2.6170 (7) 1.958 (2) 1.972 (2) 2.1226 (19) 122.04 (19) 125.71 (19) 123.3 (3) 123.3 (3) This work

Related ternary binuclear copper(II) containing 3,5-diiso­butyl­salicylate (3,5-DIBS) compounds that contain solvent ligands are also known. For instance, compounds such as [Cu(II)2(3,5-DIBS)4(CH3OH)2] and [Cu(II)2(3,5-DIBS)4(EtOH)2] have also been characterized (Benisvy et al., 2006; Seguin et al., 2021).

In contrast to these binuclear copper structures, other motifs are observed for different metals. For example, the zinc compound contains a mononuclear zinc center surrounded by two 3,5-DIPS ligands and two DMSO solvent mol­ecules of the form [Zn(II)(3,5-DIPS)2(DMSO)2] (Morgant et al., 1998). The ZnII complex of 3,5-DIPS has anti­convulsant activity and inhibits polymorphonuclear leukocyte oxidative bursts in vitro (Morgant et al., 1998). The (3,5-DIPS) compounds of Fe and Mn also exhibit anti-oxidant activity (Tavadyan et al., 2004).

5. Synthesis and crystallization

A green block of [Cu(II)2(3,5-DIPS)4(DMSO)2] suitable for X-ray diffraction was obtained by directing a flow of air above a solution of copper(II) 3,5-diiso­propyl­salicylate hydrate (0.07 g, 0.14 mmol) in DMSO (15 mL) over several days at room temperature. In the absence of a flow of air, crystals were also obtained over a period of 11 months.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Disordered groups were treated using fully constrained refinement (site occupancies, coord­inates, thermal parameters) with SHELXTL (Version 2014/7; Sheldrick, 2008). Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters U iso(H) = 1.2U eq(Csp 2) or 1.5U eq(Csp 3). The disorder of the hydroxyl groups was modeled such that the sum of their site occupancies is 1.0.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu2(C13H17O3)4(C2H6OS)2]
M r 1168.40
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 180
a, b, c (Å) 10.2990 (17), 11.734 (2), 12.846 (2)
α, β, γ (°) 87.275 (3), 88.918 (3), 72.096 (2)
V3) 1475.6 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.13 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Empirical (using intensity measurements) (SADABS; Krause et al., 2015)
T min, T max 0.692, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19892, 6767, 4879
R int 0.046
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.130, 1.09
No. of reflections 6767
No. of parameters 367
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.52

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick 2008), and SHELXL2014/7 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400166X/ev2003sup1.cif

e-80-00335-sup1.cif (725.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400166X/ev2003Isup2.hkl

e-80-00335-Isup2.hkl (537.7KB, hkl)

CCDC reference: 2333981

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Gerard Parkin (Columbia University) is thanked for helpful discussions. RKU would like to thank Pace University for Scholarly Research support awards. KM would like to thank the Collegiate Science and Technology Program of Pace University for financial support.

supplementary crystallographic information

Crystal data

[Cu2(C13H17O3)4(C2H6OS)2] Z = 1
Mr = 1168.40 F(000) = 618
Triclinic, P1 Dx = 1.315 Mg m3
a = 10.2990 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.734 (2) Å Cell parameters from 6990 reflections
c = 12.846 (2) Å θ = 2.3–28.4°
α = 87.275 (3)° µ = 0.85 mm1
β = 88.918 (3)° T = 180 K
γ = 72.096 (2)° Block, green
V = 1475.6 (4) Å3 0.13 × 0.08 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer 4879 reflections with I > 2σ(I)
φ and ω scans Rint = 0.046
Absorption correction: empirical (using intensity measurements) (SADABS; Krause et al., 2015) θmax = 27.5°, θmin = 1.6°
Tmin = 0.692, Tmax = 0.746 h = −13→13
19892 measured reflections k = −15→15
6767 independent reflections l = −16→16

Refinement

Refinement on F2 12 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2858P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
6767 reflections Δρmax = 0.61 e Å3
367 parameters Δρmin = −0.52 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. X-ray diffraction data were collected on a Bruker APEXII diffractometer using Mo-Kα radiation. The structures were solved by using direct methods and standard difference map techniques and were refined by full-matrix least-squares procedures on F2 with SHELXTL (Version 2014/7).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu 0.37845 (3) 0.49460 (3) 0.47832 (2) 0.02804 (12)
S 0.17501 (7) 0.37569 (7) 0.38084 (6) 0.0393 (2)
O1 0.18432 (19) 0.48200 (18) 0.43872 (16) 0.0389 (5)
C1 0.0029 (3) 0.4164 (3) 0.3402 (3) 0.0507 (9)
H1A −0.0116 0.3512 0.3016 0.076*
H1B −0.0573 0.4310 0.4014 0.076*
H1C −0.0178 0.4894 0.2951 0.076*
C2 0.1689 (4) 0.2664 (4) 0.4795 (4) 0.0768 (14)
H2A 0.1627 0.1942 0.4472 0.115*
H2B 0.2518 0.2461 0.5218 0.115*
H2C 0.0888 0.2984 0.5240 0.115*
O11 0.6237 (2) 0.56862 (18) 0.37685 (15) 0.0372 (5)
O12 0.4147 (2) 0.56118 (19) 0.34213 (15) 0.0399 (5)
O13 0.7689 (3) 0.6204 (3) 0.2281 (3) 0.0555 (12) 0.723 (6)
H13B 0.750 (4) 0.609 (4) 0.284 (3) 0.050 (10)* 0.723 (6)
O13A 0.3219 (9) 0.6118 (9) 0.1651 (6) 0.053 (3) 0.277 (6)
H13C 0.317 (9) 0.579 (10) 0.215 (4) 0.050 (10)* 0.277 (6)
C11 0.5242 (3) 0.5824 (2) 0.3152 (2) 0.0347 (6)
C12 0.5380 (3) 0.6236 (3) 0.2058 (2) 0.0373 (7)
C13 0.6608 (3) 0.6379 (3) 0.1690 (2) 0.0427 (7)
H13 0.7350 0.6248 0.2157 0.051* 0.277 (6)
C14 0.6762 (4) 0.6711 (3) 0.0650 (3) 0.0577 (10)
C15 0.5636 (5) 0.6937 (3) 0.0008 (3) 0.0617 (10)
H15A 0.5717 0.7184 −0.0698 0.074*
C16 0.4389 (5) 0.6821 (3) 0.0352 (3) 0.0624 (11)
C17 0.4288 (4) 0.6456 (3) 0.1381 (3) 0.0516 (9)
H17 0.3455 0.6355 0.1630 0.062* 0.723 (6)
C21 0.8506 (7) 0.6300 (7) −0.0806 (5) 0.161 (3)
H21A 0.8511 0.5462 −0.0773 0.242*
H21B 0.7839 0.6758 −0.1325 0.242*
H21C 0.9415 0.6338 −0.1005 0.242*
C22 0.8122 (5) 0.6828 (4) 0.0253 (3) 0.0814 (14)
H22A 0.8843 0.6370 0.0758 0.098*
C23 0.8107 (5) 0.8131 (5) 0.0221 (4) 0.0937 (16)
H23A 0.7858 0.8459 0.0910 0.141*
H23B 0.9015 0.8176 0.0026 0.141*
H23C 0.7439 0.8596 −0.0294 0.141*
C24 0.3386 (9) 0.6856 (6) −0.1406 (5) 0.208 (5)
H24A 0.4008 0.6039 −0.1461 0.313*
H24B 0.2521 0.6921 −0.1746 0.313*
H24C 0.3798 0.7427 −0.1746 0.313*
C25 0.3147 (7) 0.7109 (6) −0.0361 (4) 0.109 (2)
H25A 0.2630 0.6559 −0.0095 0.131*
C26 0.2219 (6) 0.8322 (9) −0.0186 (5) 0.188 (4)
H26A 0.2098 0.8436 0.0564 0.282*
H26B 0.2610 0.8920 −0.0503 0.282*
H26C 0.1333 0.8415 −0.0504 0.282*
O31 0.31003 (18) 0.65648 (16) 0.53077 (16) 0.0351 (5)
O32 0.51797 (18) 0.66681 (17) 0.56497 (15) 0.0338 (4)
O33 0.0967 (2) 0.8246 (2) 0.5838 (2) 0.0379 (7) 0.859 (5)
H33B 0.138 (3) 0.772 (3) 0.555 (3) 0.050 (10)* 0.859 (5)
O33A 0.5527 (15) 0.8378 (14) 0.6593 (16) 0.054 (6) 0.141 (5)
H33C 0.578 (12) 0.789 (14) 0.622 (14) 0.050 (10)* 0.141 (5)
C31 0.3898 (3) 0.7105 (2) 0.5652 (2) 0.0295 (6)
C32 0.3274 (3) 0.8303 (2) 0.6083 (2) 0.0286 (6)
C33 0.1852 (3) 0.8809 (2) 0.6158 (2) 0.0304 (6)
H33 0.1274 0.8388 0.5912 0.036* 0.141 (5)
C34 0.1278 (3) 0.9922 (3) 0.6591 (2) 0.0313 (6)
C35 0.2159 (3) 1.0517 (2) 0.6925 (2) 0.0320 (6)
H35A 0.1779 1.1284 0.7207 0.038*
C36 0.3580 (3) 1.0038 (2) 0.6866 (2) 0.0317 (6)
C37 0.4114 (3) 0.8930 (2) 0.6445 (2) 0.0320 (6)
H37 0.5076 0.8585 0.6401 0.038* 0.859 (5)
C41 −0.0798 (3) 1.1751 (3) 0.6886 (3) 0.0557 (9)
H41A −0.1792 1.1996 0.6968 0.084*
H41B −0.0387 1.1936 0.7513 0.084*
H41C −0.0558 1.2185 0.6279 0.084*
C42 −0.0267 (3) 1.0413 (3) 0.6728 (2) 0.0398 (7)
H42A −0.0692 1.0259 0.6078 0.048*
C43 −0.0731 (3) 0.9727 (4) 0.7631 (3) 0.0625 (11)
H43A −0.0383 0.8864 0.7522 0.094*
H43B −0.0377 0.9899 0.8288 0.094*
H43C −0.1730 0.9978 0.7659 0.094*
C44 0.5460 (4) 1.0940 (3) 0.6422 (3) 0.0520 (9)
H44A 0.4937 1.1331 0.5803 0.078*
H44B 0.5954 1.1459 0.6685 0.078*
H44C 0.6112 1.0174 0.6236 0.078*
C45 0.4495 (3) 1.0721 (3) 0.7256 (3) 0.0394 (7)
H45A 0.3888 1.1524 0.7456 0.047*
C46 0.5272 (4) 1.0117 (3) 0.8226 (3) 0.0575 (10)
H46C 0.4628 0.9984 0.8754 0.086*
H46D 0.5923 0.9345 0.8050 0.086*
H46A 0.5765 1.0630 0.8499 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.02434 (18) 0.02916 (19) 0.0328 (2) −0.01076 (14) 0.00134 (13) −0.00635 (14)
S 0.0299 (4) 0.0473 (5) 0.0447 (5) −0.0169 (3) −0.0029 (3) −0.0084 (4)
O1 0.0289 (10) 0.0425 (12) 0.0486 (13) −0.0146 (9) 0.0000 (9) −0.0120 (10)
C1 0.0322 (16) 0.071 (2) 0.054 (2) −0.0201 (16) −0.0063 (14) −0.0122 (18)
C2 0.077 (3) 0.070 (3) 0.097 (3) −0.047 (2) −0.037 (2) 0.035 (2)
O11 0.0368 (11) 0.0413 (12) 0.0333 (11) −0.0120 (9) 0.0022 (9) −0.0004 (9)
O12 0.0422 (12) 0.0466 (13) 0.0357 (11) −0.0206 (10) −0.0020 (9) −0.0023 (9)
O13 0.0343 (18) 0.073 (3) 0.047 (2) −0.0008 (16) 0.0075 (15) 0.0165 (18)
O13A 0.055 (6) 0.085 (7) 0.030 (5) −0.038 (5) −0.010 (4) 0.010 (4)
C11 0.0403 (17) 0.0274 (15) 0.0356 (16) −0.0086 (13) 0.0035 (13) −0.0070 (12)
C12 0.0453 (17) 0.0332 (16) 0.0315 (16) −0.0090 (13) 0.0031 (13) −0.0056 (12)
C13 0.0461 (19) 0.0387 (17) 0.0379 (17) −0.0054 (14) 0.0068 (14) −0.0040 (14)
C14 0.066 (2) 0.050 (2) 0.048 (2) −0.0044 (18) 0.0175 (18) 0.0020 (17)
C15 0.094 (3) 0.055 (2) 0.0348 (19) −0.020 (2) 0.009 (2) −0.0002 (16)
C16 0.095 (3) 0.063 (3) 0.0359 (19) −0.034 (2) −0.0154 (19) 0.0015 (17)
C17 0.067 (2) 0.058 (2) 0.0380 (19) −0.0307 (19) −0.0072 (16) −0.0014 (16)
C21 0.177 (7) 0.184 (7) 0.138 (6) −0.074 (6) 0.114 (5) −0.078 (5)
C22 0.069 (3) 0.098 (4) 0.057 (3) 0.000 (2) 0.034 (2) 0.018 (2)
C23 0.070 (3) 0.135 (5) 0.087 (4) −0.048 (3) 0.016 (3) −0.005 (3)
C24 0.321 (12) 0.114 (5) 0.131 (6) 0.036 (6) −0.134 (7) −0.053 (5)
C25 0.146 (5) 0.158 (6) 0.048 (3) −0.086 (5) −0.049 (3) 0.028 (3)
C26 0.079 (4) 0.298 (11) 0.127 (6) 0.046 (5) −0.056 (4) −0.092 (6)
O31 0.0268 (10) 0.0308 (11) 0.0498 (12) −0.0105 (8) −0.0015 (9) −0.0120 (9)
O32 0.0240 (10) 0.0324 (11) 0.0458 (12) −0.0087 (8) 0.0040 (8) −0.0119 (9)
O33 0.0240 (12) 0.0396 (15) 0.0538 (17) −0.0135 (11) −0.0009 (11) −0.0140 (12)
O33A 0.029 (8) 0.032 (9) 0.107 (16) −0.014 (7) 0.004 (8) −0.030 (9)
C31 0.0265 (14) 0.0309 (15) 0.0328 (15) −0.0108 (12) 0.0008 (11) −0.0041 (12)
C32 0.0241 (13) 0.0292 (14) 0.0342 (15) −0.0104 (11) 0.0022 (11) −0.0038 (11)
C33 0.0257 (13) 0.0326 (15) 0.0335 (15) −0.0098 (12) −0.0004 (11) −0.0012 (12)
C34 0.0243 (13) 0.0356 (16) 0.0332 (15) −0.0083 (12) −0.0014 (11) 0.0012 (12)
C35 0.0320 (15) 0.0265 (14) 0.0338 (15) −0.0030 (12) 0.0001 (12) −0.0058 (12)
C36 0.0257 (14) 0.0290 (15) 0.0396 (16) −0.0069 (11) −0.0016 (12) −0.0026 (12)
C37 0.0219 (13) 0.0318 (15) 0.0411 (17) −0.0062 (11) 0.0003 (11) −0.0049 (12)
C41 0.0314 (17) 0.053 (2) 0.073 (3) 0.0015 (15) 0.0025 (16) −0.0090 (18)
C42 0.0234 (14) 0.0443 (18) 0.0475 (18) −0.0039 (13) 0.0008 (13) −0.0045 (14)
C43 0.0325 (18) 0.071 (3) 0.077 (3) −0.0082 (17) 0.0171 (17) 0.008 (2)
C44 0.052 (2) 0.054 (2) 0.062 (2) −0.0333 (17) −0.0034 (17) 0.0014 (17)
C45 0.0319 (15) 0.0307 (16) 0.058 (2) −0.0109 (13) −0.0031 (14) −0.0125 (14)
C46 0.057 (2) 0.074 (3) 0.052 (2) −0.035 (2) −0.0099 (17) −0.0036 (19)

Geometric parameters (Å, º)

Cu—O12 1.958 (2) C21—C22 1.518 (7)
Cu—O31 1.9595 (19) C22—C23 1.522 (7)
Cu—O32i 1.9672 (19) C24—C25 1.389 (8)
Cu—O11i 1.972 (2) C25—C26 1.474 (8)
Cu—O1 2.1226 (19) O31—C31 1.278 (3)
Cu—Cui 2.6170 (7) O32—C31 1.261 (3)
S—O1 1.511 (2) O32—Cui 1.9672 (19)
S—C1 1.770 (3) C31—C32 1.483 (4)
S—C2 1.774 (4) C32—C37 1.394 (4)
O11—C11 1.273 (3) C32—C33 1.404 (4)
O11—Cui 1.972 (2) C33—C34 1.394 (4)
O12—C11 1.267 (3) C34—C35 1.388 (4)
C11—C12 1.483 (4) C34—C42 1.527 (4)
C12—C17 1.387 (4) C35—C36 1.400 (4)
C12—C13 1.397 (4) C36—C37 1.379 (4)
C13—C14 1.394 (4) C36—C45 1.517 (4)
C14—C15 1.386 (6) C41—C42 1.517 (4)
C14—C22 1.525 (6) C42—C43 1.532 (4)
C15—C16 1.393 (6) C44—C45 1.514 (4)
C16—C17 1.382 (5) C45—C46 1.516 (4)
C16—C25 1.529 (6)
O12—Cu—O31 90.21 (9) C17—C16—C25 120.0 (4)
O12—Cu—O32i 89.59 (9) C15—C16—C25 122.2 (4)
O31—Cu—O32i 168.77 (7) C16—C17—C12 121.3 (4)
O12—Cu—O11i 168.80 (8) C21—C22—C23 110.4 (4)
O31—Cu—O11i 88.12 (9) C21—C22—C14 112.3 (5)
O32i—Cu—O11i 89.91 (8) C23—C22—C14 111.0 (3)
O12—Cu—O1 95.71 (8) C24—C25—C26 114.0 (5)
O31—Cu—O1 95.79 (7) C24—C25—C16 117.3 (6)
O32i—Cu—O1 95.41 (8) C26—C25—C16 110.6 (4)
O11i—Cu—O1 95.48 (8) C31—O31—Cu 122.11 (17)
O12—Cu—Cui 83.21 (6) C31—O32—Cui 125.63 (18)
O31—Cu—Cui 85.92 (6) O32—C31—O31 123.3 (3)
O32i—Cu—Cui 82.91 (6) O32—C31—C32 118.8 (2)
O11i—Cu—Cui 85.63 (6) O31—C31—C32 117.9 (2)
O1—Cu—Cui 177.99 (6) C37—C32—C33 119.1 (3)
O1—S—C1 104.47 (14) C37—C32—C31 119.4 (2)
O1—S—C2 105.02 (18) C33—C32—C31 121.4 (2)
C1—S—C2 98.30 (18) C34—C33—C32 120.9 (2)
S—O1—Cu 119.72 (11) C35—C34—C33 117.8 (2)
C11—O11—Cui 122.04 (19) C35—C34—C42 122.4 (3)
C11—O12—Cu 125.71 (19) C33—C34—C42 119.8 (2)
O12—C11—O11 123.3 (3) C34—C35—C36 122.9 (3)
O12—C11—C12 118.3 (3) C37—C36—C35 117.8 (2)
O11—C11—C12 118.4 (3) C37—C36—C45 121.5 (2)
C17—C12—C13 119.4 (3) C35—C36—C45 120.7 (2)
C17—C12—C11 119.8 (3) C36—C37—C32 121.5 (2)
C13—C12—C11 120.8 (3) C41—C42—C34 114.4 (3)
C14—C13—C12 121.0 (3) C41—C42—C43 110.1 (3)
C15—C14—C13 117.4 (3) C34—C42—C43 110.0 (2)
C15—C14—C22 122.2 (3) C44—C45—C46 110.9 (3)
C13—C14—C22 120.4 (4) C44—C45—C36 112.5 (3)
C14—C15—C16 123.1 (3) C46—C45—C36 112.0 (3)
C17—C16—C15 117.8 (4)
C1—S—O1—Cu −167.93 (15) C15—C16—C25—C26 −98.5 (7)
C2—S—O1—Cu 89.15 (19) Cui—O32—C31—O31 −4.4 (4)
Cu—O12—C11—O11 −4.0 (4) Cui—O32—C31—C32 175.15 (17)
Cu—O12—C11—C12 175.03 (18) Cu—O31—C31—O32 2.6 (4)
Cui—O11—C11—O12 2.6 (4) Cu—O31—C31—C32 −176.86 (17)
Cui—O11—C11—C12 −176.39 (18) O32—C31—C32—C37 1.9 (4)
O12—C11—C12—C17 4.4 (4) O31—C31—C32—C37 −178.6 (3)
O11—C11—C12—C17 −176.6 (3) O32—C31—C32—C33 −176.6 (3)
O12—C11—C12—C13 −174.1 (3) O31—C31—C32—C33 3.0 (4)
O11—C11—C12—C13 5.0 (4) C37—C32—C33—C34 −0.2 (4)
C17—C12—C13—C14 −1.6 (5) C31—C32—C33—C34 178.3 (2)
C11—C12—C13—C14 176.9 (3) C32—C33—C34—C35 1.1 (4)
C12—C13—C14—C15 2.5 (5) C32—C33—C34—C42 −176.0 (3)
C12—C13—C14—C22 −178.3 (3) C33—C34—C35—C36 −1.4 (4)
C13—C14—C15—C16 −1.6 (6) C42—C34—C35—C36 175.7 (3)
C22—C14—C15—C16 179.2 (4) C34—C35—C36—C37 0.6 (4)
C14—C15—C16—C17 −0.3 (6) C34—C35—C36—C45 −179.2 (3)
C14—C15—C16—C25 178.2 (4) C35—C36—C37—C32 0.4 (4)
C15—C16—C17—C12 1.3 (6) C45—C36—C37—C32 −179.8 (3)
C25—C16—C17—C12 −177.3 (4) C33—C32—C37—C36 −0.6 (4)
C13—C12—C17—C16 −0.4 (5) C31—C32—C37—C36 −179.1 (3)
C11—C12—C17—C16 −178.8 (3) C35—C34—C42—C41 20.9 (4)
C15—C14—C22—C21 −42.9 (6) C33—C34—C42—C41 −162.2 (3)
C13—C14—C22—C21 137.9 (5) C35—C34—C42—C43 −103.7 (3)
C15—C14—C22—C23 81.2 (5) C33—C34—C42—C43 73.3 (4)
C13—C14—C22—C23 −98.0 (4) C37—C36—C45—C44 57.2 (4)
C17—C16—C25—C24 −146.9 (6) C35—C36—C45—C44 −123.1 (3)
C15—C16—C25—C24 34.6 (8) C37—C36—C45—C46 −68.6 (4)
C17—C16—C25—C26 80.0 (6) C35—C36—C45—C46 111.2 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O13—H13B···O11 0.75 (3) 1.91 (3) 2.568 (4) 147 (4)
O13A—H13C···O12 0.75 (3) 1.90 (4) 2.458 (8) 131 (4)
O33—H33B···O31 0.74 (3) 1.90 (3) 2.567 (3) 149 (4)
O33A—H33C···O32 0.75 (4) 1.90 (4) 2.511 (14) 138 (5)

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Benisvy, L., Mutikainen, I., Quesada, M., Turpeinen, U., Gamez, P. & Reedijk, J. (2006). Chem. Commun. pp. 3723–3725. [DOI] [PubMed]
  3. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dendrinou-Samara, C., Kessissoglou, D. P., Manoussakis, G. E., Mentzafos, D. & Terzis, A. (1990). J. Chem. Soc. Dalton Trans. pp. 959–965.
  5. Doedens, R. J. (1976). Structure and Metal–Metal interactions in Copper(II) Carboxylate Complexes. In Progress in Inorganic Chemistry, Vol. 21, edited by S. J. Lippard, pp. 209-231. New York: John Wiley & Sons, Inc.
  6. Greenaway, F. T., Joseph Norris, L. & Sorenson, J. R. J. (1988). Inorg. Chim. Acta, 145, 279–284.
  7. Greenaway, F. T., Riviere, E., Girerd, J. J., Labouze, X., Morgant, G., Viossat, B., Daran, J. C., Roch Arveiller, M. & Dung, N. H. (1999). J. Inorg. Biochem. 76, 19–27. [DOI] [PubMed]
  8. Guessous, F., Daran, J.-C. B. V., Viossat, B., Morgant, G., Labouze, X., Leroy, A. L., Roch-Arveiller, M. & Dung, N. H. (1998). Met.-Based Drugs, 5, 337–345. [DOI] [PMC free article] [PubMed]
  9. Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Morgant, G., Dung, N. H., Daran, J. C., Viossat, B., Labouze, X., Roch-Arveiller, M., Greenaway, F. T., Cordes, W. & Sorenson, J. R. (2000). J. Inorg. Biochem. 81, 11–22. [DOI] [PubMed]
  12. Morgant, G., Viossat, B., Daran, J. C., Roch-Arveiller, M., Giroud, J. P., Nguyen, H. D. & Sorenson, J. R. J. (1998). J. Inorg. Biochem. 70, 137–143. [DOI] [PubMed]
  13. Palmer, J. H. & Parkin, G. (2014). Dalton Trans. 43, 13874–13882. [DOI] [PMC free article] [PubMed]
  14. Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399.
  15. Seguin, A. K., Wrighton-Araneda, K., Cortés-Arriagada, D., Cruz, C., Venegas-Yazigi, D. & Paredes-García, V. (2021). J. Mol. Struct. 1224, 129172.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Tavadyan, L. A., Sedrakyan, G. Z., Minasyan, S. H., Greenaway, F. T. & Sorenson, J. R. J. (2004). Transition Met. Chem. 29, 684–696.
  19. Viossat, B., Daran, J. C., Savouret, G., Morgant, G., Greenaway, F. T., Dung, N. H., Pham-Tran, V. A. & Sorenson, J. R. J. (2003). J. Inorg. Biochem. 96, 375–385. [DOI] [PubMed]
  20. Viossat, B., Greenaway, F. T., Morgant, G., Daran, J. C., Dung, N. H. & Sorenson, J. R. J. (2005). J. Inorg. Biochem. 99, 355–367. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400166X/ev2003sup1.cif

e-80-00335-sup1.cif (725.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400166X/ev2003Isup2.hkl

e-80-00335-Isup2.hkl (537.7KB, hkl)

CCDC reference: 2333981

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES