Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 20;80(Pt 3):314–317. doi: 10.1107/S2056989024001300

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

Małgorzata Rybczyńska a, Artur Sikorski a,*
Editor: D Choprab
PMCID: PMC10915663  PMID: 38456052

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II), C8H20N+·C13H11N2O5S, was determined using single-crystal X-ray diffraction. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I and II of the title compound.

Keywords: nimesulide, N-(4-nitro-2-phen­oxy­phen­yl)methane­sulfonamide, tetra­ethyl­ammonium salt, API, crystal structure, polymorphism

Abstract

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound.

1. Chemical context

Nimesulide [systematic name: N-(4-nitro-2-phen­oxy­phen­yl)methane­sulfonamide] is an active pharmaceutical ingredient (API) categorized among non-steroidal anti-inflammatory drugs (NSAIDs). This is a drug that effectively manages acute pain and primary dysmenorrhea as a result of its anti­pyretic, analgesic, and anti-inflammatory properties (Kress et al., 2016; Vane & Botting, 1998). Similar to other NSAIDs, its action involves inhibiting cyclo­oxygenase – an enzyme crucial in prostaglandin synthesis within cell membranes (Bennett & Villa, 2000). 1.

The crystal structure of nimesulide is known – it exists in the form of two polymorphs (Dupont et al., 1995; Sanphui et al., 2011; Banti et al., 2016). However, only a few structures of multi-component crystals containing nimesulide have been described in the literature, such as co-crystals (Wang et al., 2020) and metal complexes (Banti et al., 2016), but only two, previously examined by us, structures of organic salts of nimesulide (Rybczyńska & Sikorski, 2023) are known. One of these salts is the tetra­ethyl­ammonium salt of nimesulide (polymorph I). We became inter­ested in it because the quaternary tetra­ethyl­ammonium cation has inter­esting bio­logical activities: it is a ganglionic blocker and inhibitor at nicotinic acetyl­choline (Kleinhaus & Prichard, 1977; Akk & Steinbach, 2003), and is a common organic structure-directing agent (OSDA) (Schmidt et al., 2016).

In this research communication, as a continuation of our recent study on the tetra­alkyl­ammonium salts of nimesulide (Rybczyńska & Sikorski, 2023), we report on the crystal structure, conformational analysis of ions and analysis of inter­molecular inter­actions in the crystal of tetra­ethyl­ammonium salt of nimesulide (polymorph II).

2. Structural commentary

The title compound crystallizes in the monoclinic P21/c space group with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit (Table 1, Fig. 1). For comparison, polymorph I crystallizes in the monoclinic P21/n space group with one ion pair in the asymmetric unit.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O20i 0.96 2.65 3.360 (4) 131
C11—H11C⋯O20ii 0.96 2.66 3.555 (4) 156
C17—H17A⋯N7iii 0.93 2.70 3.478 (4) 142
C24—H24C⋯O10 0.96 2.47 3.415 (4) 168
C25—H25A⋯O9iv 0.97 2.47 3.155 (5) 128
C26—H26C⋯O9v 0.96 2.58 3.541 (4) 175
C27—H27B⋯O9v 0.97 2.52 3.267 (4) 134
C14—H14ACg1ii 0.93 3.07 3.951 (5) 158
C24—H24ACg2v 0.96 2.88 3.608 (5) 134

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 1.

Figure 1

Crystal structure of title compound with the atom-labeling scheme (displacement ellipsoids are drawn at the 25% probability level; hydrogen bonds are represented by dashed lines).

In the crystal structure of the title compound, nimesulide occurs in an ionized form, which is confirmed by the C1—N7 [d(C—N) = 1.365 (4) Å] and N7—S8 [d(N—S) = 1.584 (2) Å] bond lengths and the value of the C1—N7—S8 angle [∠(C—N—S) = 122.7 (2)°] in the sulfonamide group. Similar d(N—S) values are also observed in the crystal structure of polymorph I [1.589 (2) Å], but the d(C—N) distance is slightly shorter and the ∠(C—N—S) angle is smaller for polymorph I [1.345 (3) Å and 119.2 (2)°, respectively]. There are also differences in the arrangement of the methyl group from the sulfonamide moiety and the phen­oxy group within the nimesulide anion (Fig. 2). In the crystal of polymorph I, the methyl group lies almost in the plane of the phenyl ring of the nimesulide anion [with torsion angle ∠(C1—N7—S8—C11) = −174.7 (2)°], while in the crystal of polymorph II it is almost perpendicular [torsion angle ∠(C1—N7—S8—C11) = −74.0 (3)°]. In turn, in the crystal of polymorph I, the phen­oxy group is tilted and twisted relative to the benzene ring of nimesulide, with a torsion angle of ∠ (C3—C2—O12—C13) = 88.5 (2)° and an inter­planar angle of 84.8 (2)°, while in the crystal of polymorph II the values of these angles are 20.9(4 and 78.3 (2)°, respectively.

Figure 2.

Figure 2

Comparison of the geometries of the nimesulide anion (a) and (b) and the tetra­ethyl­ammonium cation (c) and (d) in the crystals of the two polymorphs of the tetra­ethyl­ammonium salt of nimesulide.

Differences in the geometry of the tetra­ethyl­ammonium cation in the crystals of the two polymorphs of the title compound are also observed (Fig. 2). In the case of polymorph I, the cation adopts the geometry of a tg·tg conformer, while in the crystal of polymorph II it exists in a tt·tt conformer (Ikuno et al., 2015; Schmidt et al., 2016; Takekiyo & Yoshimura, 2006). Both conformers of the tetra­ethyl­ammonium cation are also observed in other tetra­ethyl­ammonium salts (e.g. de Arriba et al., 2011; Evans et al., 1990; Warnke et al., 2010; Lutz et al., 2014; Brahim et al., 2018). It is inter­esting that the distribution of conformers of the tetra­ethyl­ammonium cation in tetra­ethyl­ammonium hydroxide solution is temperature dependent (the tt·tt conformer dominates at lower temperatures), and higher concentrations lead to a greater proportion of the tg·tg conformer (Ikuno et al., 2015; Schmidt et al., 2016; Takekiyo & Yoshimura, 2006). This may explain why only a few single crystals of polymorph II were obtained as a result of the synthesis of the title compound carried out under specific conditions (see: Synthesis and crystallization section).

The changes in the conformation of both the nimesulide anion and the tetra­ethyl­ammonium cation results in an increase in the volume of the unit cell from 2300.6 (2) Å3 (polymorph I) to 2330.0 (4) Å3 (polymorph II). Moreover, the crystal density decreases (1.292 and 1.272 g cm−3 for polymorph I and II, respectively), as well as the Kitaigorodskii packing index (with the percentage of filled space equal to 66.7 and 66.0% for polymorphs I and II, respectively). This indicates a more favorable mol­ecular packing in the crystal of polymorph I.

3. Supra­molecular features

In the crystal of the title compound, neighboring nimesulide anions are linked by C14—H14A⋯π inter­actions [d(H⋯Cg) = 3.07 Å; Fig. 3, Table 1], forming a homodimer. Adjacent homodimers are linked through Cphen­oxy—H⋯N and Cmeth­yl—H⋯Onitro hydrogen bonds, building porous organic frameworks along the b-axis (Fig. 3, Table 1). The tetra­ethyl­ammonium cations are located in the voids of these networks and linked with the nimesulide anions via Cmeth­yl—H⋯Osulfo hydrogen bonds and C24—H24A⋯πphen­oxy inter­actions [d(H⋯Cg) = 2.88 Å; Fig. 3, Table 1].

Figure 3.

Figure 3

Crystal packing of the title compound viewed along the b axis (inter­actions between nimesulide anions are highlighted in green, whereas inter­actions between the nimesulide anion and tetra­ethyl­ammonium cation are highlighted in orange).

4. Database survey

In the Cambridge Structural Database (CSD version 5.43, update of 03/2023; Groom et al., 2016) there are only 13 structures involving a nimesulide mol­ecule or ion, viz., the crystal structures of two polymorphs of nimesulide [refcodes WINWUL (Dupont et al., 1995), WINWUL01, WINWUL02 (Sanphui et al., 2011), and WINWUL03 (Banti et al., 2016)], five structures of nimesulide–silver complexes (refcodes EXEZUE, EXIBAQ, EXIBAU, EXIBIY, EXIBOE; Banti et al., 2016), the crystal structures of tetra­methyl­ammonium and tetra­ethyl­ammonium salts of nimesulide (polymorph I; CCDC 2281374 and CCDC 2281375; Rybczyńska & Sikorski, 2023), and four structures of co-crystals of nimesulide with pyridine derivatives (refcodes LAKLOC, LAKLUI, LAKMAP, and LAKMET; Wang et al., 2021). In the CSD, there are also 5062 structures of tetra­ethyl­ammonium salts: 728 of them are structures of organic compounds involving the tetra­ethyl­ammonium cation, including three structures of sulfonamide salts (refcodes RALGOC, RALGUI, and RALHAP; de Arriba et al., 2011).

5. Synthesis and crystallization

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Nimesulide (0.05 g, 0.162 mmol) was dissolved in 0.12 ml of tetra­ethyl­ammonium hydroxide (20 wt.% in H2O, d = 1.01 g cm−3 in 293 K, 0.162 mmol) and 5 cm3 of ethanol. The solution was mixed and heated until boiling. The solution was allowed to evaporate in place without sunlight for a few days, giving yellow crystals of polymorph I and a small amount of yellow crystals of polymorph II (m.p. = 388 K). The mixture of polymorphs was separated by mechanical means.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed geom­etrically and refined using a riding model with C—H = 0.93–0.97 Å and U iso(H) = 1.2U eq(C) [C—H = 0.96 Å and U iso(H) = 1.5U eq(C) for the methyl groups]. The most disagreeable reflections (621) and (589) with an error/s.u. of more than 10 were omitted using the OMIT instruction in SHELXL (Sheldrick, 2015b ).

Table 2. Experimental details.

Crystal data
Chemical formula C8H20N+·C13H11N2O5S
M r 437.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 291
a, b, c (Å) 11.0276 (10), 10.7661 (8), 19.635 (2)
β (°) 91.792 (9)
V3) 2330.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.42 × 0.20 × 0.09
 
Data collection
Diffractometer Oxford Diffraction Ruby CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008).
T min, T max 0.966, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 15531, 4094, 2549
R int 0.073
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.128, 1.10
No. of reflections 4094
No. of parameters 276
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.23

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2017/1 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001300/dx2059sup1.cif

e-80-00314-sup1.cif (642.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001300/dx2059Isup2.hkl

e-80-00314-Isup2.hkl (326.4KB, hkl)
e-80-00314-Isup3.mol (3.2KB, mol)

Supporting information file. DOI: 10.1107/S2056989024001300/dx2059Isup3.mol

e-80-00314-Isup4.cml (8.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001300/dx2059Isup4.cml

CCDC reference: 2332021

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The title compound is protected by European patent application No. EP22208962 submitted by the authors of this paper.

supplementary crystallographic information

Crystal data

C8H20N+·C13H11N2O5S Dx = 1.247 Mg m3
Mr = 437.55 Melting point: 388 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.0276 (10) Å Cell parameters from 15531 reflections
b = 10.7661 (8) Å θ = 3.3–25.0°
c = 19.635 (2) Å µ = 0.17 mm1
β = 91.792 (9)° T = 291 K
V = 2330.0 (4) Å3 Plate, yellow
Z = 4 0.42 × 0.20 × 0.09 mm
F(000) = 936

Data collection

Oxford Diffraction Ruby CCD diffractometer 4094 independent reflections
Radiation source: fine-focus sealed tube 2549 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.073
Detector resolution: 10.4002 pixels mm-1 θmax = 25.0°, θmin = 3.3°
ω scans h = −13→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008). k = −12→11
Tmin = 0.966, Tmax = 0.998 l = −23→23
15531 measured reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.0136P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
4094 reflections Δρmax = 0.16 e Å3
276 parameters Δρmin = −0.23 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N22 0.8646 (2) 0.6786 (2) 0.66998 (12) 0.0466 (7)
C23 0.7364 (3) 0.6589 (3) 0.6432 (2) 0.0679 (10)
H23A 0.738581 0.638164 0.595204 0.082*
H23B 0.692237 0.736376 0.647115 0.082*
C24 0.6669 (4) 0.5566 (3) 0.6801 (3) 0.1112 (17)
H24A 0.590665 0.541912 0.656474 0.167*
H24B 0.652626 0.582332 0.725925 0.167*
H24C 0.713924 0.481527 0.680791 0.167*
C25 0.8677 (4) 0.7082 (3) 0.74529 (16) 0.0678 (10)
H25A 0.951411 0.722287 0.759958 0.081*
H25B 0.839097 0.636099 0.769643 0.081*
C26 0.7934 (4) 0.8196 (3) 0.76588 (18) 0.0801 (12)
H26A 0.804123 0.833377 0.814002 0.120*
H26B 0.709188 0.804419 0.755044 0.120*
H26C 0.819681 0.891737 0.741652 0.120*
C27 0.9144 (3) 0.7874 (3) 0.63015 (17) 0.0609 (10)
H27A 0.905286 0.768693 0.581930 0.073*
H27B 0.865104 0.859849 0.638968 0.073*
C28 1.0453 (4) 0.8203 (3) 0.6455 (2) 0.0968 (15)
H28A 1.064308 0.897193 0.623559 0.145*
H28B 1.096702 0.755682 0.628966 0.145*
H28C 1.058343 0.828854 0.693876 0.145*
C29 0.9416 (3) 0.5635 (3) 0.66162 (18) 0.0599 (9)
H29A 1.021525 0.579523 0.681782 0.072*
H29B 0.905901 0.496372 0.687120 0.072*
C30 0.9563 (4) 0.5207 (3) 0.58923 (19) 0.0810 (12)
H30A 1.002975 0.445354 0.589154 0.122*
H30B 0.997549 0.583607 0.564185 0.122*
H30C 0.877894 0.505702 0.568264 0.122*
C1 0.5837 (3) 0.1058 (3) 0.62935 (14) 0.0395 (7)
C2 0.4877 (3) 0.0172 (3) 0.62920 (15) 0.0435 (8)
C3 0.3730 (3) 0.0461 (3) 0.60651 (15) 0.0487 (8)
H3A 0.312492 −0.014135 0.605923 0.058*
C4 0.3469 (3) 0.1659 (3) 0.58428 (15) 0.0443 (8)
C5 0.4352 (3) 0.2565 (3) 0.58697 (16) 0.0508 (9)
H5A 0.416335 0.337348 0.573719 0.061*
C6 0.5507 (3) 0.2275 (3) 0.60917 (15) 0.0482 (8)
H6A 0.609174 0.289699 0.611006 0.058*
N7 0.6961 (2) 0.0639 (2) 0.64924 (12) 0.0463 (7)
S8 0.81473 (7) 0.14575 (7) 0.64359 (4) 0.0480 (2)
O9 0.9111 (2) 0.07799 (19) 0.67799 (12) 0.0651 (7)
O10 0.8031 (2) 0.27336 (18) 0.66560 (12) 0.0650 (7)
C11 0.8486 (3) 0.1503 (3) 0.55687 (17) 0.0700 (10)
H11A 0.923935 0.193215 0.551381 0.105*
H11B 0.784964 0.192962 0.531955 0.105*
H11C 0.855381 0.067033 0.539846 0.105*
O12 0.5189 (2) −0.09796 (19) 0.65561 (12) 0.0652 (7)
C13 0.4449 (3) −0.2003 (3) 0.63959 (18) 0.0470 (8)
C14 0.4353 (3) −0.2436 (3) 0.57443 (18) 0.0627 (10)
H14A 0.471834 −0.201598 0.539124 0.075*
C15 0.3699 (3) −0.3516 (3) 0.56192 (18) 0.0666 (10)
H15A 0.362559 −0.382462 0.517737 0.080*
C16 0.3162 (3) −0.4132 (3) 0.6137 (2) 0.0615 (10)
H16A 0.272162 −0.485449 0.604827 0.074*
C17 0.3275 (3) −0.3681 (3) 0.6785 (2) 0.0681 (11)
H17A 0.291625 −0.410340 0.713952 0.082*
C18 0.3917 (3) −0.2604 (3) 0.69191 (17) 0.0583 (9)
H18A 0.398465 −0.229272 0.736042 0.070*
N19 0.2270 (3) 0.1945 (3) 0.55838 (14) 0.0586 (8)
O20 0.1507 (2) 0.1114 (3) 0.55356 (16) 0.0935 (9)
O21 0.2031 (2) 0.3022 (2) 0.54080 (13) 0.0770 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N22 0.0522 (17) 0.0362 (15) 0.0510 (16) 0.0145 (12) −0.0039 (14) 0.0031 (12)
C23 0.050 (2) 0.054 (2) 0.098 (3) 0.0153 (18) −0.014 (2) −0.007 (2)
C24 0.073 (3) 0.056 (3) 0.205 (5) −0.003 (2) 0.014 (3) 0.001 (3)
C25 0.087 (3) 0.059 (2) 0.056 (2) 0.018 (2) −0.007 (2) 0.0037 (18)
C26 0.119 (4) 0.061 (2) 0.061 (2) 0.024 (2) 0.015 (2) −0.0029 (19)
C27 0.074 (3) 0.045 (2) 0.064 (2) 0.0070 (18) 0.007 (2) −0.0001 (17)
C28 0.072 (3) 0.068 (3) 0.151 (4) −0.002 (2) 0.021 (3) −0.006 (3)
C29 0.058 (2) 0.0418 (19) 0.080 (2) 0.0192 (17) 0.000 (2) −0.0001 (17)
C30 0.097 (3) 0.055 (2) 0.091 (3) 0.024 (2) 0.009 (3) −0.011 (2)
C1 0.040 (2) 0.0374 (17) 0.0410 (17) 0.0008 (15) −0.0005 (15) −0.0015 (14)
C2 0.044 (2) 0.0340 (18) 0.0525 (19) 0.0003 (15) −0.0052 (16) 0.0032 (15)
C3 0.042 (2) 0.0476 (19) 0.056 (2) −0.0055 (16) −0.0017 (17) 0.0028 (16)
C4 0.040 (2) 0.045 (2) 0.0471 (18) 0.0125 (16) −0.0036 (15) −0.0040 (15)
C5 0.057 (2) 0.0385 (19) 0.057 (2) 0.0086 (17) −0.0053 (18) −0.0015 (15)
C6 0.050 (2) 0.0336 (18) 0.061 (2) −0.0008 (15) −0.0035 (18) 0.0000 (15)
N7 0.0420 (16) 0.0359 (14) 0.0604 (16) −0.0043 (12) −0.0097 (13) 0.0023 (12)
S8 0.0430 (5) 0.0379 (5) 0.0625 (5) −0.0019 (4) −0.0088 (4) −0.0006 (4)
O9 0.0511 (15) 0.0513 (14) 0.0908 (17) −0.0002 (11) −0.0303 (13) 0.0074 (12)
O10 0.0650 (16) 0.0354 (13) 0.0943 (18) −0.0065 (11) −0.0034 (14) −0.0120 (12)
C11 0.057 (2) 0.083 (3) 0.070 (2) 0.004 (2) 0.003 (2) 0.005 (2)
O12 0.0570 (15) 0.0397 (13) 0.0973 (18) −0.0101 (11) −0.0246 (13) 0.0216 (12)
C13 0.041 (2) 0.0308 (17) 0.069 (2) 0.0017 (15) −0.0028 (18) 0.0121 (17)
C14 0.069 (3) 0.060 (2) 0.059 (2) −0.005 (2) 0.005 (2) 0.0146 (19)
C15 0.077 (3) 0.058 (2) 0.064 (2) −0.002 (2) −0.005 (2) −0.008 (2)
C16 0.053 (2) 0.0384 (19) 0.093 (3) −0.0068 (16) 0.000 (2) 0.004 (2)
C17 0.074 (3) 0.052 (2) 0.079 (3) −0.014 (2) 0.020 (2) 0.006 (2)
C18 0.069 (2) 0.048 (2) 0.058 (2) −0.0018 (18) 0.009 (2) 0.0001 (17)
N19 0.053 (2) 0.059 (2) 0.0638 (18) 0.0120 (17) −0.0041 (16) −0.0079 (16)
O20 0.0448 (17) 0.0792 (19) 0.155 (3) −0.0002 (15) −0.0180 (17) 0.0119 (18)
O21 0.0763 (19) 0.0619 (17) 0.0912 (18) 0.0275 (14) −0.0240 (15) −0.0052 (14)

Geometric parameters (Å, º)

N22—C23 1.508 (4) C2—C3 1.364 (4)
N22—C25 1.512 (4) C2—O12 1.383 (3)
N22—C29 1.514 (3) C3—C4 1.389 (4)
N22—C27 1.520 (4) C3—H3A 0.9300
C23—C24 1.536 (5) C4—C5 1.378 (4)
C23—H23A 0.9700 C4—N19 1.436 (4)
C23—H23B 0.9700 C5—C6 1.370 (4)
C24—H24A 0.9600 C5—H5A 0.9300
C24—H24B 0.9600 C6—H6A 0.9300
C24—H24C 0.9600 N7—S8 1.584 (2)
C25—C26 1.515 (4) S8—O9 1.439 (2)
C25—H25A 0.9700 S8—O10 1.447 (2)
C25—H25B 0.9700 S8—C11 1.755 (3)
C26—H26A 0.9600 C11—H11A 0.9600
C26—H26B 0.9600 C11—H11B 0.9600
C26—H26C 0.9600 C11—H11C 0.9600
C27—C28 1.508 (5) O12—C13 1.401 (3)
C27—H27A 0.9700 C13—C14 1.363 (4)
C27—H27B 0.9700 C13—C18 1.363 (4)
C28—H28A 0.9600 C14—C15 1.387 (5)
C28—H28B 0.9600 C14—H14A 0.9300
C28—H28C 0.9600 C15—C16 1.364 (5)
C29—C30 1.508 (4) C15—H15A 0.9300
C29—H29A 0.9700 C16—C17 1.365 (5)
C29—H29B 0.9700 C16—H16A 0.9300
C30—H30A 0.9600 C17—C18 1.379 (4)
C30—H30B 0.9600 C17—H17A 0.9300
C30—H30C 0.9600 C18—H18A 0.9300
C1—N7 1.365 (4) N19—O20 1.230 (3)
C1—C6 1.412 (4) N19—O21 1.235 (3)
C1—C2 1.425 (4)
C23—N22—C25 111.3 (3) N7—C1—C6 127.6 (3)
C23—N22—C29 111.7 (2) N7—C1—C2 116.6 (3)
C25—N22—C29 106.5 (2) C6—C1—C2 115.8 (3)
C23—N22—C27 106.2 (2) C3—C2—O12 123.0 (3)
C25—N22—C27 110.1 (2) C3—C2—C1 122.0 (3)
C29—N22—C27 111.2 (2) O12—C2—C1 115.0 (3)
N22—C23—C24 114.4 (3) C2—C3—C4 119.7 (3)
N22—C23—H23A 108.7 C2—C3—H3A 120.2
C24—C23—H23A 108.7 C4—C3—H3A 120.2
N22—C23—H23B 108.7 C5—C4—C3 120.4 (3)
C24—C23—H23B 108.7 C5—C4—N19 120.2 (3)
H23A—C23—H23B 107.6 C3—C4—N19 119.4 (3)
C23—C24—H24A 109.5 C6—C5—C4 120.0 (3)
C23—C24—H24B 109.5 C6—C5—H5A 120.0
H24A—C24—H24B 109.5 C4—C5—H5A 120.0
C23—C24—H24C 109.5 C5—C6—C1 122.0 (3)
H24A—C24—H24C 109.5 C5—C6—H6A 119.0
H24B—C24—H24C 109.5 C1—C6—H6A 119.0
N22—C25—C26 115.6 (3) C1—N7—S8 122.7 (2)
N22—C25—H25A 108.4 O9—S8—O10 114.35 (14)
C26—C25—H25A 108.4 O9—S8—N7 106.51 (13)
N22—C25—H25B 108.4 O10—S8—N7 115.20 (13)
C26—C25—H25B 108.4 O9—S8—C11 107.03 (16)
H25A—C25—H25B 107.4 O10—S8—C11 106.68 (16)
C25—C26—H26A 109.5 N7—S8—C11 106.53 (16)
C25—C26—H26B 109.5 S8—C11—H11A 109.5
H26A—C26—H26B 109.5 S8—C11—H11B 109.5
C25—C26—H26C 109.5 H11A—C11—H11B 109.5
H26A—C26—H26C 109.5 S8—C11—H11C 109.5
H26B—C26—H26C 109.5 H11A—C11—H11C 109.5
C28—C27—N22 115.9 (3) H11B—C11—H11C 109.5
C28—C27—H27A 108.3 C2—O12—C13 119.0 (2)
N22—C27—H27A 108.3 C14—C13—C18 121.5 (3)
C28—C27—H27B 108.3 C14—C13—O12 120.5 (3)
N22—C27—H27B 108.3 C18—C13—O12 117.8 (3)
H27A—C27—H27B 107.4 C13—C14—C15 118.6 (3)
C27—C28—H28A 109.5 C13—C14—H14A 120.7
C27—C28—H28B 109.5 C15—C14—H14A 120.7
H28A—C28—H28B 109.5 C16—C15—C14 120.8 (3)
C27—C28—H28C 109.5 C16—C15—H15A 119.6
H28A—C28—H28C 109.5 C14—C15—H15A 119.6
H28B—C28—H28C 109.5 C15—C16—C17 119.5 (3)
C30—C29—N22 115.5 (3) C15—C16—H16A 120.2
C30—C29—H29A 108.4 C17—C16—H16A 120.2
N22—C29—H29A 108.4 C16—C17—C18 120.6 (3)
C30—C29—H29B 108.4 C16—C17—H17A 119.7
N22—C29—H29B 108.4 C18—C17—H17A 119.7
H29A—C29—H29B 107.5 C13—C18—C17 119.1 (3)
C29—C30—H30A 109.5 C13—C18—H18A 120.5
C29—C30—H30B 109.5 C17—C18—H18A 120.5
H30A—C30—H30B 109.5 O20—N19—O21 121.5 (3)
C29—C30—H30C 109.5 O20—N19—C4 119.4 (3)
H30A—C30—H30C 109.5 O21—N19—C4 119.1 (3)
H30B—C30—H30C 109.5
C25—N22—C23—C24 −57.0 (4) N7—C1—C6—C5 176.7 (3)
C29—N22—C23—C24 61.9 (4) C2—C1—C6—C5 −3.8 (4)
C27—N22—C23—C24 −176.7 (3) C6—C1—N7—S8 −8.2 (4)
C23—N22—C25—C26 −56.6 (4) C2—C1—N7—S8 172.3 (2)
C29—N22—C25—C26 −178.6 (3) C1—N7—S8—O9 172.0 (2)
C27—N22—C25—C26 60.8 (4) C1—N7—S8—O10 44.0 (3)
C23—N22—C27—C28 −176.8 (3) C1—N7—S8—C11 −74.0 (3)
C25—N22—C27—C28 62.7 (4) C3—C2—O12—C13 20.9 (4)
C29—N22—C27—C28 −55.0 (4) C1—C2—O12—C13 −161.0 (3)
C23—N22—C29—C30 61.3 (4) C2—O12—C13—C14 66.3 (4)
C25—N22—C29—C30 −177.1 (3) C2—O12—C13—C18 −118.9 (3)
C27—N22—C29—C30 −57.2 (4) C18—C13—C14—C15 −0.2 (5)
N7—C1—C2—C3 −176.0 (3) O12—C13—C14—C15 174.3 (3)
C6—C1—C2—C3 4.3 (4) C13—C14—C15—C16 0.1 (5)
N7—C1—C2—O12 5.9 (4) C14—C15—C16—C17 −0.3 (6)
C6—C1—C2—O12 −173.7 (3) C15—C16—C17—C18 0.6 (6)
O12—C2—C3—C4 176.3 (3) C14—C13—C18—C17 0.6 (5)
C1—C2—C3—C4 −1.6 (5) O12—C13—C18—C17 −174.1 (3)
C2—C3—C4—C5 −2.0 (4) C16—C17—C18—C13 −0.8 (5)
C2—C3—C4—N19 178.0 (3) C5—C4—N19—O20 176.9 (3)
C3—C4—C5—C6 2.6 (5) C3—C4—N19—O20 −3.1 (4)
N19—C4—C5—C6 −177.4 (3) C5—C4—N19—O21 −2.4 (4)
C4—C5—C6—C1 0.4 (5) C3—C4—N19—O21 177.6 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C11—H11A···O20i 0.96 2.65 3.360 (4) 131
C11—H11C···O20ii 0.96 2.66 3.555 (4) 156
C17—H17A···N7iii 0.93 2.70 3.478 (4) 142
C24—H24C···O10 0.96 2.47 3.415 (4) 168
C25—H25A···O9iv 0.97 2.47 3.155 (5) 128
C26—H26C···O9v 0.96 2.58 3.541 (4) 175
C27—H27B···O9v 0.97 2.52 3.267 (4) 134
C14—H14A···Cg1ii 0.93 3.07 3.951 (5) 158
C24—H24A···Cg2v 0.96 2.88 3.608 (5) 134

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+2, y+1/2, −z+3/2; (v) x, y+1, z.

Funding Statement

Funding for this research was provided by: Research of Young Scientists grant (BMN) No. 539-T080-B063-23 (University of Gdańsk), DS No. 531-T080-D738-23 (University of Gdańsk), and project ‘Innovation Incubator 4.0’ established by the announcement of the Minister of Science and Higher Education in Poland on 5 June 2020.

References

  1. Akk, G. & Steinbach, J. H. (2003). J. Physiol. 551, 155–168. [DOI] [PMC free article] [PubMed]
  2. Banti, C. N., Papatriantafyllopoulou, C., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2016). Inorg. Chem. 55, 8681–8696. [DOI] [PubMed]
  3. Ben Brahim, K., Ben gzaiel, M., Oueslati, A. & Gargouri, M. (2018). RSC Adv. 8, 40676–40686. [DOI] [PMC free article] [PubMed]
  4. Bennett, A. & Villa, G. (2000). Expert Opin. Pharmacother. 1, 277–286. [DOI] [PubMed]
  5. Dupont, L., Pirotte, B., Masereel, B., Delarge, J. & Geczy, J. (1995). Acta Cryst. C51, 507–509.
  6. Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818–1821.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Fuentes de Arriba, L., Turiel, M. G., Simón, L., Sanz, F., Boyero, J. F., Muñiz, F. M., Morán, J. R. & Alcázar, V. (2011). Org. Biomol. Chem. 9, 8321–8327. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Ikuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., Kohara, S., Wakihara, T. & Okubo, T. (2015). J. Am. Chem. Soc. 137, 14533–14544. [DOI] [PubMed]
  11. Kleinhaus, A. L. & Prichard, J. (1977). J. Physiol. 270, 181–194. [DOI] [PMC free article] [PubMed]
  12. Kress, H. G., Baltov, A., Basiński, A., Berghea, F., Castellsague, J., Codreanu, C., Copaciu, E., Giamberardino, M. A., Hakl, M., Hrazdira, L., Kokavec, M., Lejčko, J., Nachtnebl, L., Stančík, R., Švec, A., Tóth, T., Vlaskovska, M. V. & Woroń, J. (2016). Curr. Med. Res. Opin. 32, 23–36. [DOI] [PubMed]
  13. Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470–476. [DOI] [PubMed]
  14. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  15. Rybczyńska, M. & Sikorski, A. (2023). Sci. Rep. 13, 17268. [DOI] [PMC free article] [PubMed]
  16. Sanphui, P., Sarma, B. & Nangia, A. (2011). J. Pharm. Sci. 100, 2287–2299. [DOI] [PubMed]
  17. Schmidt, J. E., Fu, D., Deem, M. W. & Weckhuysen, B. M. (2016). Angew. Chem. Int. Ed. 55, 16044–16048. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Takekiyo, T. & Yoshimura, Y. (2006). J. Phys. Chem. A, 110, 10829–10833. [DOI] [PubMed]
  21. Vane, J. R. & Botting, R. M. (1998). Am. J. Med. 104, 2–8.
  22. Wang, M., Ma, Y., Shi, P., Du, S., Wu, S. & Gong, J. (2021). Cryst. Growth Des. 21, 287–296.
  23. Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285–289.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001300/dx2059sup1.cif

e-80-00314-sup1.cif (642.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001300/dx2059Isup2.hkl

e-80-00314-Isup2.hkl (326.4KB, hkl)
e-80-00314-Isup3.mol (3.2KB, mol)

Supporting information file. DOI: 10.1107/S2056989024001300/dx2059Isup3.mol

e-80-00314-Isup4.cml (8.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001300/dx2059Isup4.cml

CCDC reference: 2332021

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES