The ring systems of 4-(benzo[d]thiazol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one are almost coplanar. In the three-dimensional packing, the carbonyl oxygen accepts four weak hydrogen bonds.
Keywords: crystal structure, benzothiazole, pyrazolone, weak hydrogen bonds
Abstract
In the title compound, C12H11N3OS, the interplanar angle between the pyrazole and benzothiazole rings is 3.31 (7)°. In the three-dimensional molecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to (
01) can be recognized as a subsection of the packing.
1. Chemical context
Many natural heterocyclic compounds and pharmaceuticals involve benzothiazole moieties and derivatives thereof, which are among the most significant heterocyclic compounds utilized in medicinal chemistry (Bonde et al., 2015 ▸). In the search for novel and significant therapeutic drugs, benzothiazoles have a wide range of established pharmacological properties (Wang et al., 2009 ▸), and their derivatives include several structural variants (Rana et al., 2008 ▸). The application of benzothiazole derivatives in current research and related discoveries is a well-appreciated and quickly growing area of medicinal chemistry (Abdallah et al., 2023 ▸). As an example, several drugs based on benzothiazole derivatives have been widely utilized in clinical practice to treat a variety of disorders, with a marked therapeutic efficacy (Huang et al., 2009 ▸).
In the course of our studies, intended to develop syntheses of benzothiazole-based heterocycles for use as pharmaceuticals and pigments (Ahmed et al., 2022 ▸, 2023 ▸), a variety of 2-pyrimidyl-, 2-pyridyl- and 2-thienyl-benzothiazole compounds with encouraging cytotoxic action have recently been synthesized and their biological activity reported (Azzam et al., 2017 ▸, 2019 ▸, 2022 ▸).
In line with these findings and our prior research (Metwally et al., 2022a ▸,b ▸), the aim of the current investigation was to design and create benzothiazolyl-pyrazole hybrids. The reaction of 2-benzothiazolyl acetohydrazide 1 with N,N-dimethylformamide dimethyl acetal 2 at room temperature led to the synthesis of the unexpected benzothiazole-2-pyrazole derivative 3 in good yield (Fig. 1 ▸). The mechanism for the formation of 3 is currently under investigation. In order to establish the structure of the product unambiguously, its crystal structure was determined and is reported here.
Figure 1.

The synthesis of the title compound 3.
2. Structural commentary
The structure of compound 3 is shown in Fig. 2 ▸, with selected molecular dimensions in Table 1 ▸. These may be regarded as normal, within the constraints of linked five-membered rings that necessarily lead to narrow angles within the rings and wide exocyclic angles [up to 127.48 (11)° for C10—C8—C2]. The molecule is essentially planar (except for the methyl hydrogens); the least-squares plane through all non-H atoms has an r.m.s.d. of only 0.037 Å. If the ring systems are regarded separately, the pyrazole and benzothiazole rings have r.m.s.d. values of 0.006 and 0.017 Å, respectively, and an interplanar angle of 3.31 (7)°. The coplanarity leads to a short intramolecular contact S1⋯O1 = 2.9797 (10) Å.
Figure 2.
The structure of compound 3 in the crystal. Ellipsoids correspond to 50% probability levels.
Table 1. Selected geometric parameters (Å, °).
| S1—C7A | 1.7374 (13) | N2—C10 | 1.3326 (16) |
| S1—C2 | 1.7673 (12) | N3—C2 | 1.3051 (16) |
| O1—C9 | 1.2468 (15) | N3—C3A | 1.3879 (16) |
| N1—N2 | 1.3766 (14) | C2—C8 | 1.4348 (17) |
| N1—C9 | 1.3772 (16) | C3A—C7A | 1.4058 (18) |
| C7A—S1—C2 | 88.85 (6) | C7—C7A—S1 | 128.77 (11) |
| N2—N1—C9 | 109.59 (10) | C3A—C7A—S1 | 109.37 (9) |
| C10—N2—N1 | 108.87 (10) | C10—C8—C2 | 127.48 (11) |
| C2—N3—C3A | 110.45 (11) | C10—C8—C9 | 107.06 (11) |
| N3—C2—C8 | 124.55 (11) | C2—C8—C9 | 125.46 (11) |
| N3—C2—S1 | 115.65 (9) | O1—C9—N1 | 123.88 (11) |
| C8—C2—S1 | 119.80 (9) | O1—C9—C8 | 130.92 (12) |
| N3—C3A—C4 | 125.04 (12) | N1—C9—C8 | 105.19 (10) |
| N3—C3A—C7A | 115.66 (11) | N2—C10—C8 | 109.28 (11) |
3. Supramolecular features
The molecular packing involves five short contacts, four C—H⋯O1 and one C—H⋯S1, that are acceptably linear and may be regarded as ‘weak’ hydrogen bonds (Table 2 ▸). The donor atom H12B is part of a three-centre system with acceptors O1 and S1. The contact H12C⋯O1 is remarkably short at 2.25 Å. Additionally, there is a short contact S1⋯N1(x,
− y,
+ z) = 3.4078 (11) Å. A section of the packing is shown in Fig. 3 ▸; a ribbon parallel to the b axis and its antiparallel counterpart are shown, which form a double layer parallel to (
01). However, the molecules are further linked parallel to the view direction to give a three-dimensional pattern. There are no Cent–Cent contacts shorter than 3.75 Å and no H⋯Cent contacts shorter than 2.99 Å (Cent = ring centroids).
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C10—H10⋯O1i | 0.95 | 2.38 | 3.2055 (15) | 145 |
| C11—H11A⋯O1ii | 0.98 | 2.51 | 3.4368 (16) | 158 |
| C12—H12B⋯S1i | 0.98 | 2.86 | 3.7142 (13) | 146 |
| C12—H12B⋯O1i | 0.98 | 2.60 | 3.4696 (16) | 148 |
| C12—H12C⋯O1ii | 0.98 | 2.25 | 3.1966 (16) | 163 |
Symmetry codes: (i)
; (ii)
.
Figure 3.
A section of the three-dimensional packing of compound 3: two antiparallel ribbons viewed perpendicular to (
01). Contacts to O1 are shown as thick dashed lines and those to S1 as thin dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted. The atom labels indicate the asymmetric unit.
4. Database survey
The search employed the routine ConQuest (Bruno et al., 2002 ▸), part of Version 2023.3.0 of the Cambridge Structural Database (Groom et al., 2016 ▸).
A search for other structures containing a linked pyrazolone/benzothiazole unit as in 3 led to three hits: AZUPIV, with 1-Me, 2-Ph and 5-Me substituents on the pyrazolone ring (Chakib et al., 2011 ▸), VABFIP (1-allyl, 2-Ph, 5-Me; Chakib et al., 2010a ▸) and VABFOV (1-propynyl, 2-Ph, 5-Me; Chakib et al., 2010b ▸). The interplanar angles in these compounds are 6.1 (1), 7.9 (2) and 4.7 (1)°, respectively.
5. Synthesis and crystallization
A mixture of 2-benzothiazolyl acetohydrazide 1 (0.01 mol) and N,N-dimethylformamide dimethyl acetal 2 (0.02 mol) was stirred at room temperature for 1 h. The excess acetal was distilled off under reduced pressure; the solid product was washed with a mixture of petroleum ether and diethyl ether (1:1) and then crystallized from ethanol.
Yellow solid; yield 85%; m.p. 414 K; IR (KBr, cm−1): ν 3068 (aromatic CH), 2930 (methyl CH), 1620 (C=O), 1598 (C=N); 1H NMR (400 MHz, DMSO-d 6): δ 3.80 (s, 3H, CH3), 4.01 (s, 3H, CH3), 7.34 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.46 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.89 (d, J = 7.6 Hz, 1H, benzothiazole H), 8.03 (d, J = 8.0 Hz, 1H, benzothiazole H), 8.35 (s, 1H, pyrazolone H). Analysis calculated for C12H11N3OS (245.30): C 58.76, H 4.52, N 17.13, S 13.07. Found C 58.66, H 4.40, N 17.08, S 13.14%.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. The methyl groups were included as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip (command ‘AFIX 137’). Other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95 Å). The U iso(H) values were fixed at 1.5 × U eq of the parent carbon atoms for the methyl group and 1.2 × U eq for other hydrogens. One reflection clearly in error (F o 2 >> F c 2) was omitted from the refinement.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C12H11N3OS |
| M r | 245.30 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 100 |
| a, b, c (Å) | 8.78308 (12), 11.66215 (16), 11.00169 (15) |
| β (°) | 97.9460 (12) |
| V (Å3) | 1116.08 (3) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 2.47 |
| Crystal size (mm) | 0.15 × 0.10 × 0.03 |
| Data collection | |
| Diffractometer | XtaLAB Synergy |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2021 ▸) |
| T min, T max | 0.731, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 46018, 2367, 2280 |
| R int | 0.037 |
| (sin θ/λ)max (Å−1) | 0.634 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.030, 0.081, 1.07 |
| No. of reflections | 2367 |
| No. of parameters | 156 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.28, −0.36 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989024001257/yz2050sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001257/yz2050Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024001257/yz2050Isup3.cml
CCDC reference: 2331586
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
supplementary crystallographic information
Crystal data
| C12H11N3OS | F(000) = 512 |
| Mr = 245.30 | Dx = 1.460 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
| a = 8.78308 (12) Å | Cell parameters from 32695 reflections |
| b = 11.66215 (16) Å | θ = 5.1–77.4° |
| c = 11.00169 (15) Å | µ = 2.47 mm−1 |
| β = 97.9460 (12)° | T = 100 K |
| V = 1116.08 (3) Å3 | Plate, pale yellow |
| Z = 4 | 0.15 × 0.10 × 0.03 mm |
Data collection
| XtaLAB Synergy diffractometer | 2367 independent reflections |
| Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2280 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.037 |
| Detector resolution: 10.0000 pixels mm-1 | θmax = 77.6°, θmin = 5.1° |
| ω scans | h = −11→11 |
| Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −14→14 |
| Tmin = 0.731, Tmax = 1.000 | l = −13→13 |
| 46018 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
| wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4017P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max = 0.001 |
| 2367 reflections | Δρmax = 0.28 e Å−3 |
| 156 parameters | Δρmin = −0.36 e Å−3 |
| 0 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.63680 (4) | 0.71933 (2) | 0.56971 (3) | 0.02849 (11) | |
| O1 | 0.40109 (11) | 0.79924 (7) | 0.36636 (8) | 0.0311 (2) | |
| N1 | 0.33946 (12) | 0.67380 (9) | 0.20375 (9) | 0.0266 (2) | |
| N2 | 0.39212 (12) | 0.56914 (8) | 0.16939 (9) | 0.0268 (2) | |
| N3 | 0.73240 (12) | 0.52608 (9) | 0.48701 (10) | 0.0288 (2) | |
| C2 | 0.63324 (14) | 0.60863 (10) | 0.45966 (11) | 0.0259 (2) | |
| C3A | 0.82145 (14) | 0.54730 (11) | 0.59907 (12) | 0.0286 (3) | |
| C4 | 0.94097 (16) | 0.47710 (12) | 0.65366 (13) | 0.0350 (3) | |
| H4 | 0.964387 | 0.407342 | 0.615676 | 0.042* | |
| C5 | 1.02447 (16) | 0.51076 (13) | 0.76368 (13) | 0.0382 (3) | |
| H5 | 1.106443 | 0.463964 | 0.800905 | 0.046* | |
| C6 | 0.98995 (16) | 0.61274 (13) | 0.82092 (13) | 0.0378 (3) | |
| H6 | 1.049479 | 0.634461 | 0.896126 | 0.045* | |
| C7 | 0.87033 (16) | 0.68266 (12) | 0.76977 (12) | 0.0339 (3) | |
| H7 | 0.845688 | 0.751223 | 0.809420 | 0.041* | |
| C7A | 0.78751 (14) | 0.64905 (11) | 0.65836 (11) | 0.0284 (3) | |
| C8 | 0.52570 (14) | 0.61387 (10) | 0.34907 (11) | 0.0258 (2) | |
| C9 | 0.42066 (14) | 0.70641 (10) | 0.31446 (11) | 0.0258 (2) | |
| C10 | 0.50225 (14) | 0.53273 (10) | 0.25637 (11) | 0.0267 (3) | |
| H10 | 0.556198 | 0.462239 | 0.255040 | 0.032* | |
| C11 | 0.22779 (15) | 0.74119 (11) | 0.12468 (12) | 0.0313 (3) | |
| H11A | 0.260232 | 0.747813 | 0.043243 | 0.047* | |
| H11B | 0.220412 | 0.817829 | 0.159925 | 0.047* | |
| H11C | 0.127222 | 0.703488 | 0.117398 | 0.047* | |
| C12 | 0.32435 (15) | 0.51086 (11) | 0.05843 (12) | 0.0301 (3) | |
| H12A | 0.214516 | 0.498538 | 0.061218 | 0.045* | |
| H12B | 0.375258 | 0.436717 | 0.052279 | 0.045* | |
| H12C | 0.337515 | 0.557948 | −0.013158 | 0.045* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.03690 (19) | 0.02172 (17) | 0.02606 (17) | 0.00157 (11) | 0.00148 (12) | −0.00057 (10) |
| O1 | 0.0411 (5) | 0.0228 (4) | 0.0290 (4) | 0.0033 (4) | 0.0038 (4) | −0.0025 (3) |
| N1 | 0.0317 (5) | 0.0205 (5) | 0.0273 (5) | 0.0015 (4) | 0.0028 (4) | −0.0008 (4) |
| N2 | 0.0334 (5) | 0.0198 (5) | 0.0267 (5) | 0.0006 (4) | 0.0030 (4) | −0.0013 (4) |
| N3 | 0.0314 (5) | 0.0253 (5) | 0.0295 (5) | 0.0014 (4) | 0.0038 (4) | 0.0007 (4) |
| C2 | 0.0308 (6) | 0.0210 (5) | 0.0265 (6) | −0.0019 (4) | 0.0062 (5) | 0.0007 (4) |
| C3A | 0.0287 (6) | 0.0278 (6) | 0.0294 (6) | −0.0021 (5) | 0.0044 (5) | 0.0023 (5) |
| C4 | 0.0338 (6) | 0.0336 (7) | 0.0371 (7) | 0.0045 (5) | 0.0033 (5) | 0.0025 (5) |
| C5 | 0.0315 (7) | 0.0431 (8) | 0.0386 (7) | 0.0022 (6) | −0.0002 (5) | 0.0073 (6) |
| C6 | 0.0355 (7) | 0.0437 (8) | 0.0321 (7) | −0.0076 (6) | −0.0025 (5) | 0.0034 (6) |
| C7 | 0.0380 (7) | 0.0318 (7) | 0.0312 (6) | −0.0065 (5) | 0.0025 (5) | 0.0005 (5) |
| C7A | 0.0309 (6) | 0.0258 (6) | 0.0286 (6) | −0.0034 (5) | 0.0046 (5) | 0.0037 (5) |
| C8 | 0.0316 (6) | 0.0204 (5) | 0.0258 (6) | −0.0008 (4) | 0.0051 (5) | 0.0010 (4) |
| C9 | 0.0305 (6) | 0.0228 (6) | 0.0247 (6) | −0.0013 (4) | 0.0054 (5) | 0.0015 (4) |
| C10 | 0.0324 (6) | 0.0206 (6) | 0.0273 (6) | 0.0003 (5) | 0.0045 (5) | 0.0017 (5) |
| C11 | 0.0353 (7) | 0.0270 (6) | 0.0303 (6) | 0.0049 (5) | 0.0000 (5) | −0.0002 (5) |
| C12 | 0.0374 (7) | 0.0239 (6) | 0.0281 (6) | −0.0029 (5) | 0.0014 (5) | −0.0023 (5) |
Geometric parameters (Å, º)
| S1—C7A | 1.7374 (13) | C5—C6 | 1.398 (2) |
| S1—C2 | 1.7673 (12) | C5—H5 | 0.9500 |
| O1—C9 | 1.2468 (15) | C6—C7 | 1.386 (2) |
| N1—N2 | 1.3766 (14) | C6—H6 | 0.9500 |
| N1—C9 | 1.3772 (16) | C7—C7A | 1.3923 (18) |
| N1—C11 | 1.4493 (16) | C7—H7 | 0.9500 |
| N2—C10 | 1.3326 (16) | C8—C10 | 1.3856 (17) |
| N2—C12 | 1.4511 (15) | C8—C9 | 1.4365 (17) |
| N3—C2 | 1.3051 (16) | C10—H10 | 0.9500 |
| N3—C3A | 1.3879 (16) | C11—H11A | 0.9800 |
| C2—C8 | 1.4348 (17) | C11—H11B | 0.9800 |
| C3A—C4 | 1.3995 (18) | C11—H11C | 0.9800 |
| C3A—C7A | 1.4058 (18) | C12—H12A | 0.9800 |
| C4—C5 | 1.383 (2) | C12—H12B | 0.9800 |
| C4—H4 | 0.9500 | C12—H12C | 0.9800 |
| C7A—S1—C2 | 88.85 (6) | C7A—C7—H7 | 121.1 |
| N2—N1—C9 | 109.59 (10) | C7—C7A—C3A | 121.85 (12) |
| N2—N1—C11 | 122.76 (10) | C7—C7A—S1 | 128.77 (11) |
| C9—N1—C11 | 127.29 (10) | C3A—C7A—S1 | 109.37 (9) |
| C10—N2—N1 | 108.87 (10) | C10—C8—C2 | 127.48 (11) |
| C10—N2—C12 | 128.87 (10) | C10—C8—C9 | 107.06 (11) |
| N1—N2—C12 | 122.15 (10) | C2—C8—C9 | 125.46 (11) |
| C2—N3—C3A | 110.45 (11) | O1—C9—N1 | 123.88 (11) |
| N3—C2—C8 | 124.55 (11) | O1—C9—C8 | 130.92 (12) |
| N3—C2—S1 | 115.65 (9) | N1—C9—C8 | 105.19 (10) |
| C8—C2—S1 | 119.80 (9) | N2—C10—C8 | 109.28 (11) |
| N3—C3A—C4 | 125.04 (12) | N2—C10—H10 | 125.4 |
| N3—C3A—C7A | 115.66 (11) | C8—C10—H10 | 125.4 |
| C4—C3A—C7A | 119.29 (12) | N1—C11—H11A | 109.5 |
| C5—C4—C3A | 119.03 (13) | N1—C11—H11B | 109.5 |
| C5—C4—H4 | 120.5 | H11A—C11—H11B | 109.5 |
| C3A—C4—H4 | 120.5 | N1—C11—H11C | 109.5 |
| C4—C5—C6 | 120.93 (13) | H11A—C11—H11C | 109.5 |
| C4—C5—H5 | 119.5 | H11B—C11—H11C | 109.5 |
| C6—C5—H5 | 119.5 | N2—C12—H12A | 109.5 |
| C7—C6—C5 | 121.11 (13) | N2—C12—H12B | 109.5 |
| C7—C6—H6 | 119.4 | H12A—C12—H12B | 109.5 |
| C5—C6—H6 | 119.4 | N2—C12—H12C | 109.5 |
| C6—C7—C7A | 117.78 (13) | H12A—C12—H12C | 109.5 |
| C6—C7—H7 | 121.1 | H12B—C12—H12C | 109.5 |
| C9—N1—N2—C10 | 1.41 (13) | C4—C3A—C7A—S1 | 179.30 (10) |
| C11—N1—N2—C10 | 174.94 (11) | C2—S1—C7A—C7 | 177.82 (13) |
| C9—N1—N2—C12 | 177.72 (11) | C2—S1—C7A—C3A | −0.88 (9) |
| C11—N1—N2—C12 | −8.75 (17) | N3—C2—C8—C10 | 3.3 (2) |
| C3A—N3—C2—C8 | 178.92 (11) | S1—C2—C8—C10 | −176.73 (10) |
| C3A—N3—C2—S1 | −1.06 (13) | N3—C2—C8—C9 | −176.88 (11) |
| C7A—S1—C2—N3 | 1.17 (10) | S1—C2—C8—C9 | 3.10 (17) |
| C7A—S1—C2—C8 | −178.81 (10) | N2—N1—C9—O1 | 177.75 (11) |
| C2—N3—C3A—C4 | −178.36 (12) | C11—N1—C9—O1 | 4.6 (2) |
| C2—N3—C3A—C7A | 0.34 (15) | N2—N1—C9—C8 | −1.34 (13) |
| N3—C3A—C4—C5 | 177.54 (13) | C11—N1—C9—C8 | −174.50 (11) |
| C7A—C3A—C4—C5 | −1.12 (19) | C10—C8—C9—O1 | −178.19 (13) |
| C3A—C4—C5—C6 | 0.6 (2) | C2—C8—C9—O1 | 1.9 (2) |
| C4—C5—C6—C7 | 0.5 (2) | C10—C8—C9—N1 | 0.80 (13) |
| C5—C6—C7—C7A | −1.2 (2) | C2—C8—C9—N1 | −179.06 (11) |
| C6—C7—C7A—C3A | 0.65 (19) | N1—N2—C10—C8 | −0.86 (13) |
| C6—C7—C7A—S1 | −177.91 (10) | C12—N2—C10—C8 | −176.86 (12) |
| N3—C3A—C7A—C7 | −178.29 (11) | C2—C8—C10—N2 | 179.88 (12) |
| C4—C3A—C7A—C7 | 0.49 (19) | C9—C8—C10—N2 | 0.03 (14) |
| N3—C3A—C7A—S1 | 0.52 (14) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C10—H10···O1i | 0.95 | 2.38 | 3.2055 (15) | 145 |
| C11—H11A···O1ii | 0.98 | 2.51 | 3.4368 (16) | 158 |
| C12—H12B···S1i | 0.98 | 2.86 | 3.7142 (13) | 146 |
| C12—H12B···O1i | 0.98 | 2.60 | 3.4696 (16) | 148 |
| C12—H12C···O1ii | 0.98 | 2.25 | 3.1966 (16) | 163 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.
References
- Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E79, 441–445. [DOI] [PMC free article] [PubMed]
- Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5.
- Ahmed, E. A., Elgemeie, G. H. & Azzam, R. A. (2023). Synth. Commun. 53, 386–401.
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022). Acta Cryst. E78, 369–372. [DOI] [PMC free article] [PubMed]
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
- Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. [DOI] [PMC free article] [PubMed]
- Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580.
- Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
- Chakib, I., Zerzouf, A., Rodi, Y. K., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o2700. [DOI] [PMC free article] [PubMed]
- Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842. [DOI] [PMC free article] [PubMed]
- Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o2843. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. [DOI] [PubMed]
- Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.
- Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448. [DOI] [PMC free article] [PubMed]
- Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. [DOI] [PubMed]
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989024001257/yz2050sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001257/yz2050Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024001257/yz2050Isup3.cml
CCDC reference: 2331586
Additional supporting information: crystallographic information; 3D view; checkCIF report


