Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 16;80(Pt 3):289–291. doi: 10.1107/S2056989024001257

Crystal structure of 4-(benzo[d]thia­zol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one

Heba A Elboshi a, Rasha A Azzam a, Galal H Elgemeie a, Peter G Jones b,*
Editor: C Schulzkec
PMCID: PMC10915665  PMID: 38456045

The ring systems of 4-(benzo[d]thia­zol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one are almost coplanar. In the three-dimensional packing, the carbonyl oxygen accepts four weak hydrogen bonds.

Keywords: crystal structure, benzo­thia­zole, pyrazolone, weak hydrogen bonds

Abstract

In the title compound, C12H11N3OS, the inter­planar angle between the pyrazole and benzo­thia­zole rings is 3.31 (7)°. In the three-dimensional mol­ecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to ( Inline graphic 01) can be recognized as a subsection of the packing.

1. Chemical context

Many natural heterocyclic compounds and pharmaceuticals involve benzo­thia­zole moieties and derivatives thereof, which are among the most significant heterocyclic compounds utilized in medicinal chemistry (Bonde et al., 2015). In the search for novel and significant therapeutic drugs, benzo­thia­zoles have a wide range of established pharmacological properties (Wang et al., 2009), and their derivatives include several structural variants (Rana et al., 2008). The application of benzo­thia­zole derivatives in current research and related discoveries is a well-appreciated and quickly growing area of medicinal chemistry (Abdallah et al., 2023). As an example, several drugs based on benzo­thia­zole derivatives have been widely utilized in clinical practice to treat a variety of disorders, with a marked therapeutic efficacy (Huang et al., 2009).

In the course of our studies, intended to develop syntheses of benzo­thia­zole-based heterocycles for use as pharmaceuticals and pigments (Ahmed et al., 2022, 2023), a variety of 2-pyrimidyl-, 2-pyridyl- and 2-thienyl-benzo­thia­zole compounds with encouraging cytotoxic action have recently been synthesized and their biological activity reported (Azzam et al., 2017, 2019, 2022). 1.

In line with these findings and our prior research (Metwally et al., 2022a ,b ), the aim of the current investigation was to design and create benzo­thia­zolyl-pyrazole hybrids. The reaction of 2-benzo­thia­zolyl acetohydrazide 1 with N,N-di­methyl­formamide dimethyl acetal 2 at room temperature led to the synthesis of the unexpected benzo­thia­zole-2-pyrazole derivative 3 in good yield (Fig. 1). The mechanism for the formation of 3 is currently under investigation. In order to establish the structure of the product unambiguously, its crystal structure was determined and is reported here.

Figure 1.

Figure 1

The synthesis of the title compound 3.

2. Structural commentary

The structure of compound 3 is shown in Fig. 2, with selected mol­ecular dimensions in Table 1. These may be regarded as normal, within the constraints of linked five-membered rings that necessarily lead to narrow angles within the rings and wide exocyclic angles [up to 127.48 (11)° for C10—C8—C2]. The mol­ecule is essentially planar (except for the methyl hydrogens); the least-squares plane through all non-H atoms has an r.m.s.d. of only 0.037 Å. If the ring systems are regarded separately, the pyrazole and benzo­thia­zole rings have r.m.s.d. values of 0.006 and 0.017 Å, respectively, and an inter­planar angle of 3.31 (7)°. The coplanarity leads to a short intra­molecular contact S1⋯O1 = 2.9797 (10) Å.

Figure 2.

Figure 2

The structure of compound 3 in the crystal. Ellipsoids correspond to 50% probability levels.

Table 1. Selected geometric parameters (Å, °).

S1—C7A 1.7374 (13) N2—C10 1.3326 (16)
S1—C2 1.7673 (12) N3—C2 1.3051 (16)
O1—C9 1.2468 (15) N3—C3A 1.3879 (16)
N1—N2 1.3766 (14) C2—C8 1.4348 (17)
N1—C9 1.3772 (16) C3A—C7A 1.4058 (18)
       
C7A—S1—C2 88.85 (6) C7—C7A—S1 128.77 (11)
N2—N1—C9 109.59 (10) C3A—C7A—S1 109.37 (9)
C10—N2—N1 108.87 (10) C10—C8—C2 127.48 (11)
C2—N3—C3A 110.45 (11) C10—C8—C9 107.06 (11)
N3—C2—C8 124.55 (11) C2—C8—C9 125.46 (11)
N3—C2—S1 115.65 (9) O1—C9—N1 123.88 (11)
C8—C2—S1 119.80 (9) O1—C9—C8 130.92 (12)
N3—C3A—C4 125.04 (12) N1—C9—C8 105.19 (10)
N3—C3A—C7A 115.66 (11) N2—C10—C8 109.28 (11)

3. Supra­molecular features

The mol­ecular packing involves five short contacts, four C—H⋯O1 and one C—H⋯S1, that are acceptably linear and may be regarded as ‘weak’ hydrogen bonds (Table 2). The donor atom H12B is part of a three-centre system with acceptors O1 and S1. The contact H12C⋯O1 is remarkably short at 2.25 Å. Additionally, there is a short contact S1⋯N1(x, Inline graphic  − y, Inline graphic  + z) = 3.4078 (11) Å. A section of the packing is shown in Fig. 3; a ribbon parallel to the b axis and its anti­parallel counterpart are shown, which form a double layer parallel to ( Inline graphic 01). However, the mol­ecules are further linked parallel to the view direction to give a three-dimensional pattern. There are no CentCent contacts shorter than 3.75 Å and no H⋯Cent contacts shorter than 2.99 Å (Cent = ring centroids).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.38 3.2055 (15) 145
C11—H11A⋯O1ii 0.98 2.51 3.4368 (16) 158
C12—H12B⋯S1i 0.98 2.86 3.7142 (13) 146
C12—H12B⋯O1i 0.98 2.60 3.4696 (16) 148
C12—H12C⋯O1ii 0.98 2.25 3.1966 (16) 163

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

A section of the three-dimensional packing of compound 3: two anti­parallel ribbons viewed perpendicular to ( Inline graphic 01). Contacts to O1 are shown as thick dashed lines and those to S1 as thin dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted. The atom labels indicate the asymmetric unit.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002), part of Version 2023.3.0 of the Cambridge Structural Database (Groom et al., 2016).

A search for other structures containing a linked pyrazolone/benzo­thia­zole unit as in 3 led to three hits: AZUPIV, with 1-Me, 2-Ph and 5-Me substituents on the pyrazolone ring (Chakib et al., 2011), VABFIP (1-allyl, 2-Ph, 5-Me; Chakib et al., 2010a ) and VABFOV (1-propynyl, 2-Ph, 5-Me; Chakib et al., 2010b ). The inter­planar angles in these compounds are 6.1 (1), 7.9 (2) and 4.7 (1)°, respectively.

5. Synthesis and crystallization

A mixture of 2-benzo­thia­zolyl acetohydrazide 1 (0.01 mol) and N,N-di­methyl­formamide dimethyl acetal 2 (0.02 mol) was stirred at room temperature for 1 h. The excess acetal was distilled off under reduced pressure; the solid product was washed with a mixture of petroleum ether and diethyl ether (1:1) and then crystallized from ethanol.

Yellow solid; yield 85%; m.p. 414 K; IR (KBr, cm−1): ν 3068 (aromatic CH), 2930 (methyl CH), 1620 (C=O), 1598 (C=N); 1H NMR (400 MHz, DMSO-d 6): δ 3.80 (s, 3H, CH3), 4.01 (s, 3H, CH3), 7.34 (t, J = 7.2 Hz, 1H, benzo­thia­zole H), 7.46 (t, J = 7.2 Hz, 1H, benzo­thia­zole H), 7.89 (d, J = 7.6 Hz, 1H, benzo­thia­zole H), 8.03 (d, J = 8.0 Hz, 1H, benzo­thia­zole H), 8.35 (s, 1H, pyrazolone H). Analysis calculated for C12H11N3OS (245.30): C 58.76, H 4.52, N 17.13, S 13.07. Found C 58.66, H 4.40, N 17.08, S 13.14%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The methyl groups were included as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip (command ‘AFIX 137’). Other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95 Å). The U iso(H) values were fixed at 1.5 × U eq of the parent carbon atoms for the methyl group and 1.2 × U eq for other hydrogens. One reflection clearly in error (F o 2 >> F c 2) was omitted from the refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C12H11N3OS
M r 245.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.78308 (12), 11.66215 (16), 11.00169 (15)
β (°) 97.9460 (12)
V3) 1116.08 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.47
Crystal size (mm) 0.15 × 0.10 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.731, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46018, 2367, 2280
R int 0.037
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.081, 1.07
No. of reflections 2367
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2019/3 (Sheldrick, 2015b ) and XP (Bruker, 1998).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989024001257/yz2050sup1.cif

e-80-00289-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001257/yz2050Isup2.hkl

e-80-00289-Isup2.hkl (189.8KB, hkl)
e-80-00289-Isup3.cml (4.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001257/yz2050Isup3.cml

CCDC reference: 2331586

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

supplementary crystallographic information

Crystal data

C12H11N3OS F(000) = 512
Mr = 245.30 Dx = 1.460 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 8.78308 (12) Å Cell parameters from 32695 reflections
b = 11.66215 (16) Å θ = 5.1–77.4°
c = 11.00169 (15) Å µ = 2.47 mm1
β = 97.9460 (12)° T = 100 K
V = 1116.08 (3) Å3 Plate, pale yellow
Z = 4 0.15 × 0.10 × 0.03 mm

Data collection

XtaLAB Synergy diffractometer 2367 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2280 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
Detector resolution: 10.0000 pixels mm-1 θmax = 77.6°, θmin = 5.1°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −14→14
Tmin = 0.731, Tmax = 1.000 l = −13→13
46018 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4017P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
2367 reflections Δρmax = 0.28 e Å3
156 parameters Δρmin = −0.36 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.63680 (4) 0.71933 (2) 0.56971 (3) 0.02849 (11)
O1 0.40109 (11) 0.79924 (7) 0.36636 (8) 0.0311 (2)
N1 0.33946 (12) 0.67380 (9) 0.20375 (9) 0.0266 (2)
N2 0.39212 (12) 0.56914 (8) 0.16939 (9) 0.0268 (2)
N3 0.73240 (12) 0.52608 (9) 0.48701 (10) 0.0288 (2)
C2 0.63324 (14) 0.60863 (10) 0.45966 (11) 0.0259 (2)
C3A 0.82145 (14) 0.54730 (11) 0.59907 (12) 0.0286 (3)
C4 0.94097 (16) 0.47710 (12) 0.65366 (13) 0.0350 (3)
H4 0.964387 0.407342 0.615676 0.042*
C5 1.02447 (16) 0.51076 (13) 0.76368 (13) 0.0382 (3)
H5 1.106443 0.463964 0.800905 0.046*
C6 0.98995 (16) 0.61274 (13) 0.82092 (13) 0.0378 (3)
H6 1.049479 0.634461 0.896126 0.045*
C7 0.87033 (16) 0.68266 (12) 0.76977 (12) 0.0339 (3)
H7 0.845688 0.751223 0.809420 0.041*
C7A 0.78751 (14) 0.64905 (11) 0.65836 (11) 0.0284 (3)
C8 0.52570 (14) 0.61387 (10) 0.34907 (11) 0.0258 (2)
C9 0.42066 (14) 0.70641 (10) 0.31446 (11) 0.0258 (2)
C10 0.50225 (14) 0.53273 (10) 0.25637 (11) 0.0267 (3)
H10 0.556198 0.462239 0.255040 0.032*
C11 0.22779 (15) 0.74119 (11) 0.12468 (12) 0.0313 (3)
H11A 0.260232 0.747813 0.043243 0.047*
H11B 0.220412 0.817829 0.159925 0.047*
H11C 0.127222 0.703488 0.117398 0.047*
C12 0.32435 (15) 0.51086 (11) 0.05843 (12) 0.0301 (3)
H12A 0.214516 0.498538 0.061218 0.045*
H12B 0.375258 0.436717 0.052279 0.045*
H12C 0.337515 0.557948 −0.013158 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03690 (19) 0.02172 (17) 0.02606 (17) 0.00157 (11) 0.00148 (12) −0.00057 (10)
O1 0.0411 (5) 0.0228 (4) 0.0290 (4) 0.0033 (4) 0.0038 (4) −0.0025 (3)
N1 0.0317 (5) 0.0205 (5) 0.0273 (5) 0.0015 (4) 0.0028 (4) −0.0008 (4)
N2 0.0334 (5) 0.0198 (5) 0.0267 (5) 0.0006 (4) 0.0030 (4) −0.0013 (4)
N3 0.0314 (5) 0.0253 (5) 0.0295 (5) 0.0014 (4) 0.0038 (4) 0.0007 (4)
C2 0.0308 (6) 0.0210 (5) 0.0265 (6) −0.0019 (4) 0.0062 (5) 0.0007 (4)
C3A 0.0287 (6) 0.0278 (6) 0.0294 (6) −0.0021 (5) 0.0044 (5) 0.0023 (5)
C4 0.0338 (6) 0.0336 (7) 0.0371 (7) 0.0045 (5) 0.0033 (5) 0.0025 (5)
C5 0.0315 (7) 0.0431 (8) 0.0386 (7) 0.0022 (6) −0.0002 (5) 0.0073 (6)
C6 0.0355 (7) 0.0437 (8) 0.0321 (7) −0.0076 (6) −0.0025 (5) 0.0034 (6)
C7 0.0380 (7) 0.0318 (7) 0.0312 (6) −0.0065 (5) 0.0025 (5) 0.0005 (5)
C7A 0.0309 (6) 0.0258 (6) 0.0286 (6) −0.0034 (5) 0.0046 (5) 0.0037 (5)
C8 0.0316 (6) 0.0204 (5) 0.0258 (6) −0.0008 (4) 0.0051 (5) 0.0010 (4)
C9 0.0305 (6) 0.0228 (6) 0.0247 (6) −0.0013 (4) 0.0054 (5) 0.0015 (4)
C10 0.0324 (6) 0.0206 (6) 0.0273 (6) 0.0003 (5) 0.0045 (5) 0.0017 (5)
C11 0.0353 (7) 0.0270 (6) 0.0303 (6) 0.0049 (5) 0.0000 (5) −0.0002 (5)
C12 0.0374 (7) 0.0239 (6) 0.0281 (6) −0.0029 (5) 0.0014 (5) −0.0023 (5)

Geometric parameters (Å, º)

S1—C7A 1.7374 (13) C5—C6 1.398 (2)
S1—C2 1.7673 (12) C5—H5 0.9500
O1—C9 1.2468 (15) C6—C7 1.386 (2)
N1—N2 1.3766 (14) C6—H6 0.9500
N1—C9 1.3772 (16) C7—C7A 1.3923 (18)
N1—C11 1.4493 (16) C7—H7 0.9500
N2—C10 1.3326 (16) C8—C10 1.3856 (17)
N2—C12 1.4511 (15) C8—C9 1.4365 (17)
N3—C2 1.3051 (16) C10—H10 0.9500
N3—C3A 1.3879 (16) C11—H11A 0.9800
C2—C8 1.4348 (17) C11—H11B 0.9800
C3A—C4 1.3995 (18) C11—H11C 0.9800
C3A—C7A 1.4058 (18) C12—H12A 0.9800
C4—C5 1.383 (2) C12—H12B 0.9800
C4—H4 0.9500 C12—H12C 0.9800
C7A—S1—C2 88.85 (6) C7A—C7—H7 121.1
N2—N1—C9 109.59 (10) C7—C7A—C3A 121.85 (12)
N2—N1—C11 122.76 (10) C7—C7A—S1 128.77 (11)
C9—N1—C11 127.29 (10) C3A—C7A—S1 109.37 (9)
C10—N2—N1 108.87 (10) C10—C8—C2 127.48 (11)
C10—N2—C12 128.87 (10) C10—C8—C9 107.06 (11)
N1—N2—C12 122.15 (10) C2—C8—C9 125.46 (11)
C2—N3—C3A 110.45 (11) O1—C9—N1 123.88 (11)
N3—C2—C8 124.55 (11) O1—C9—C8 130.92 (12)
N3—C2—S1 115.65 (9) N1—C9—C8 105.19 (10)
C8—C2—S1 119.80 (9) N2—C10—C8 109.28 (11)
N3—C3A—C4 125.04 (12) N2—C10—H10 125.4
N3—C3A—C7A 115.66 (11) C8—C10—H10 125.4
C4—C3A—C7A 119.29 (12) N1—C11—H11A 109.5
C5—C4—C3A 119.03 (13) N1—C11—H11B 109.5
C5—C4—H4 120.5 H11A—C11—H11B 109.5
C3A—C4—H4 120.5 N1—C11—H11C 109.5
C4—C5—C6 120.93 (13) H11A—C11—H11C 109.5
C4—C5—H5 119.5 H11B—C11—H11C 109.5
C6—C5—H5 119.5 N2—C12—H12A 109.5
C7—C6—C5 121.11 (13) N2—C12—H12B 109.5
C7—C6—H6 119.4 H12A—C12—H12B 109.5
C5—C6—H6 119.4 N2—C12—H12C 109.5
C6—C7—C7A 117.78 (13) H12A—C12—H12C 109.5
C6—C7—H7 121.1 H12B—C12—H12C 109.5
C9—N1—N2—C10 1.41 (13) C4—C3A—C7A—S1 179.30 (10)
C11—N1—N2—C10 174.94 (11) C2—S1—C7A—C7 177.82 (13)
C9—N1—N2—C12 177.72 (11) C2—S1—C7A—C3A −0.88 (9)
C11—N1—N2—C12 −8.75 (17) N3—C2—C8—C10 3.3 (2)
C3A—N3—C2—C8 178.92 (11) S1—C2—C8—C10 −176.73 (10)
C3A—N3—C2—S1 −1.06 (13) N3—C2—C8—C9 −176.88 (11)
C7A—S1—C2—N3 1.17 (10) S1—C2—C8—C9 3.10 (17)
C7A—S1—C2—C8 −178.81 (10) N2—N1—C9—O1 177.75 (11)
C2—N3—C3A—C4 −178.36 (12) C11—N1—C9—O1 4.6 (2)
C2—N3—C3A—C7A 0.34 (15) N2—N1—C9—C8 −1.34 (13)
N3—C3A—C4—C5 177.54 (13) C11—N1—C9—C8 −174.50 (11)
C7A—C3A—C4—C5 −1.12 (19) C10—C8—C9—O1 −178.19 (13)
C3A—C4—C5—C6 0.6 (2) C2—C8—C9—O1 1.9 (2)
C4—C5—C6—C7 0.5 (2) C10—C8—C9—N1 0.80 (13)
C5—C6—C7—C7A −1.2 (2) C2—C8—C9—N1 −179.06 (11)
C6—C7—C7A—C3A 0.65 (19) N1—N2—C10—C8 −0.86 (13)
C6—C7—C7A—S1 −177.91 (10) C12—N2—C10—C8 −176.86 (12)
N3—C3A—C7A—C7 −178.29 (11) C2—C8—C10—N2 179.88 (12)
C4—C3A—C7A—C7 0.49 (19) C9—C8—C10—N2 0.03 (14)
N3—C3A—C7A—S1 0.52 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···O1i 0.95 2.38 3.2055 (15) 145
C11—H11A···O1ii 0.98 2.51 3.4368 (16) 158
C12—H12B···S1i 0.98 2.86 3.7142 (13) 146
C12—H12B···O1i 0.98 2.60 3.4696 (16) 148
C12—H12C···O1ii 0.98 2.25 3.1966 (16) 163

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.

References

  1. Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E79, 441–445. [DOI] [PMC free article] [PubMed]
  2. Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5.
  3. Ahmed, E. A., Elgemeie, G. H. & Azzam, R. A. (2023). Synth. Commun. 53, 386–401.
  4. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022). Acta Cryst. E78, 369–372. [DOI] [PMC free article] [PubMed]
  5. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  6. Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. [DOI] [PMC free article] [PubMed]
  7. Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580.
  8. Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  9. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  10. Chakib, I., Zerzouf, A., Rodi, Y. K., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o2700. [DOI] [PMC free article] [PubMed]
  11. Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842. [DOI] [PMC free article] [PubMed]
  12. Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o2843. [DOI] [PMC free article] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. [DOI] [PubMed]
  15. Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.
  16. Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448. [DOI] [PMC free article] [PubMed]
  17. Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. [DOI] [PubMed]
  18. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989024001257/yz2050sup1.cif

e-80-00289-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001257/yz2050Isup2.hkl

e-80-00289-Isup2.hkl (189.8KB, hkl)
e-80-00289-Isup3.cml (4.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001257/yz2050Isup3.cml

CCDC reference: 2331586

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES