Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 20;80(Pt 3):300–304. doi: 10.1107/S2056989024001518

Crystal structure and Hirshfeld surface analysis of 3-phenyl-1-{3-[(3-phenyl­quinoxalin-2-yl)­oxy]prop­yl}-1,2-di­hydro­quinoxalin-2-one

Nadeem Abad a,b, Joel T Mague c, Abdulsalam Alsubari d,*, El Mokhtar Essassi e, Abdullah Yahya Abdullah Alzahrani f, Youssef Ramli a,g,*
Editor: L Van Meervelth
PMCID: PMC10915666  PMID: 38456048

In the title compound, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains extending along the a-axis direction. The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties.

Keywords: crystal structure, quinoxaline, alkyl­ation, hydrogen bond, π-stacking, Hirshfeld surface analysis

Abstract

In the title compound, C31H24N4O2, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains extending along the a-axis direction. The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties.

1. Chemical context

The therapeutic and industrial importance of nitro­gen-containing heterocyclic rings has attracted much attention. Among the various classes of nitro­gen-containing heterocyclic compounds, quinoxaline derivatives have an important role in medicinal chemistry and display a broad spectrum of biological and pharmacological activities such as anti­microbial, anti­viral, anti­cancer, anti-inflammatory, anti-diabetic, anti-HIV, anti-tubercular and analgesic activities (Ramli & Essassi, 2015). Some analogs have been synthesized and evaluated for their industrial properties (e.g. Lgaz et al., 2015). 1.

Our inter­est in quinoxalines results from their simple synthesis, and the ease with which X-ray quality crystals can be grown. Following this line of research, and as a continuation of our work in this area (e.g. Missioui et al., 2022), we report herein the synthesis of 3-phenyl-1-{3-[(3-phenyl­quinoxalin-2-yl)­oxy]prop­yl}-1,2-di­hydro­quinoxalin-2-one obtained by an alkyl­ation reaction of 3-phenyl­quinoxalin-2(1H)-one using 1,3-di­bromo­propane as an alkyl­ating reagent and sodium hydroxide in the presence of tetra-n-butyl­ammonium bromide as catalyst in phase-transfer catalysis. A colorless plate-like specimen of the title compound was used for the X-ray crystallographic analysis (Fig. 1). A Hirshfeld surface analysis was performed to analyze the inter­molecular hydrogen bonds.

Figure 1.

Figure 1

The title mol­ecule with the labeling scheme and 50% probability ellipsoids.

2. Structural commentary

Neither quinoxaline unit is planar and in both instances, the heterocyclic ring has atoms deviating by 0.02–0.04 Å from the mean plane. Thus in the pyrazine ring containing N1, atom C7 is 0.0411 (7) Å from the mean plane and C8 is −0.0356 (7) Å from it (r.m.s. deviation of the fitted atoms = 0.0299 Å). The C1–C6 ring is inclined to the above plane by 4.99 (8)° while the dihedral angle subtended with the C9–C14 ring is 11.51 (7)°. The rotational orientation of the former ring is partially determined by the intra­molecular C14—H14⋯O1 hydrogen bond (Table 1 and Fig. 1), while that of the latter ring may be influenced by a C27—H27⋯O2 hydrogen bond [H27⋯O2 = 2.448 (13) Å, C27⋯O2 = 2.8791 (14) Å], but with the C27—H27⋯O2 angle being only 106.1 (9)°, this is weak at best. At the other end, the pyrazine ring containing N3 is closer to planarity with displacements from the mean plane being 0.0174 (7) Å (N4) and −0.0195 (7) Å (C25) (r.m.s. deviation of the fitted atoms = 0.0150 Å). Here the dihedral angle to the C18–C23 plane is 2.85 (7)° and that to the C26–C31 ring is 38.75 (4)°. The linker between the quinoxaline units is rather kinked, as seen from the torsion angles in Table 2.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1 0.961 (14) 2.197 (13) 2.8225 (14) 121.7 (10)
C15—H15B⋯O1i 0.962 (12) 2.503 (12) 3.3484 (13) 146.6 (9)
C17—H17A⋯N1ii 0.976 (13) 2.581 (13) 3.5523 (14) 173.3 (10)
C17—H17B⋯O1i 1.021 (12) 2.568 (13) 3.4700 (15) 147.1 (9)
C21—H21⋯O1iii 0.971 (14) 2.404 (14) 3.2166 (15) 140.9 (11)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Table 2. Selected torsion angles (°).

C1—N2—C15—C16 101.04 (11) C15—C16—C17—O2 68.47 (12)
N2—C15—C16—C17 178.73 (8) C17—O2—C24—N3 −2.55 (14)
C24—O2—C17—C16 179.54 (8)    

3. Supra­molecular features

In the crystal, C15—H15B⋯O1, C17—H17B⋯O1, C21—H21⋯O1 and C17—H17A⋯N1 hydrogen bonds (Table 1) link the mol­ecules into chains extending along the a-axis direction (Figs. 2 and 3). The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties with centroid–centroid distances of 3.7756 (6) and 3.6440 (7) Å (Figs. 2 and 3).

Figure 2.

Figure 2

Packing viewed along the a-axis direction. C—H⋯O and C—H⋯N hydrogen bonds are indicated by black and light-purple dashed lines, respectively. The π-stacking inter­action is indicated by an orange dashed line.

Figure 3.

Figure 3

Packing viewed along the c-axis direction with inter­molecular inter­actions depicted as in Fig. 2.

4. Hirshfeld surface analysis

The inter­molecular inter­actions in the crystal were qu­anti­fied through a Hirshfeld Surface (HS) analysis using CrystalExplorer 21.5 (Spackman et al., (2021). Additional details of the inter­pretation of the results have been published (Tan et al., 2019). In the standard d norm surface (Fig. 4 a) the C—H⋯O and C—H⋯N hydrogen bonds to the closest neighboring mol­ecules are depicted by green dashed lines. In Fig. 4 b (shape-index) and 4c (curvedness), the π-stacking inter­actions involving the neighboring mol­ecule that has the most overlap with the surface can be seen. This is particularly evident in Fig. 4 c where the quinoxaline rings are separated by a significant flat region of the surface. A similar flat region appears on the left side of the surface in Fig. 4 c. The overall two-dimensional fingerprint plot, Fig. 5 a, and those delineated into specific inter­molecular inter­action types are shown in Fig. 5 bf. From these, H⋯H contacts account for 51.3% of the total, while C⋯H/H⋯C contribute another 24.2%. The remaining significant contacts are C⋯C (π-stacking, 9.0%), N⋯H/H⋯N (6.5%), O⋯H/H⋯O (5.0%) and C⋯N (π-stacking, 3.5%).

Figure 4.

Figure 4

The Hirshfeld surfaces (a) d norm, (b) shape index and (c) curvedness with three neighboring mol­ecules showing the C—H⋯O and C—H⋯N hydrogen bonds (dashed lines).

Figure 5.

Figure 5

Two-dimensional fingerprint plots showing (a) all inter­molecular inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) C⋯C, (e) N⋯H/H⋯N and (f) O⋯H/H⋯O contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, updated to November 2023; Groom et al., 2016) with the search fragment A (Fig. 6, R = C) yielded two hits with R = benzyl (FACPEI; Abad et al., 2020) and R = (oxazolidin-2-one-3-yl)ethyl (UREREP; Daouda et al., 2011). In the former, the r.m.s. deviation of the quinoxaline atoms from their mean plane is 0.001 Å, while the phenyl ring is inclined to this plane by 39.32 (5)o and the C—O—C—C torsion angle in the benz­yloxy linker is 97.06 (11)o. In the latter, the quinoxaline ring atoms vary from 0.040 (3) to −0.047 (2) Å from the mean plane in one independent mol­ecule and 0.046 (4) to −0.075 (3) Å in the other. The phenyl ring is inclined to the mean quinoxaline plane by 38.44 (14)o in the first and 38.97 (14)o in the second.

Figure 6.

Figure 6

CSD search fragments.

Using the fragment B (Fig. 6), fifteen hits were returned with R = –(CH2)7Me (AZAZEC; Abad et al., 2021d ), Me (BUDMAP; Benzeid et al., 2009a ), ethyl (1H-1,2,3-triazol-1-yl)methyl acetate (ECUCOY; Abad et al., 2022), –(CH2)2OC=O)Me (ESUKUB; Abad et al., 2021a ), (1-hexyl-1H-1,2,3-triazol-5-yl)methyl (FOFCIQ; Abad et al., 2023a ), (oxazolidin-2-one-3-yl)ethyl (IDOSUR; Al Ati et al., 2021), [3-(4-methyl­phen­yl)-4,5-di­hydro-1,2-oxazol-5-yl]methyl (ILI­RED; Abad et al., 2021b ), Et (MAGBIJ; Al Ati et al., 2021), (oxirane-2-yl)methyl (NIBXEE; Abad et al., 2018a ), benzyl (PUGGII; Benzeid et al., 2009b ), –(CH2)2CH2OH (RIRBOM; Abad et al., 2018b ), –(CH2)8Me (UDAMIZ; Abad et al., 2021c ), –(CH2)4Me (UFITEM; Abad et al., 2023b ), –(CH2)2CO2Et (XEXWIJ; Abad et al., 2018c ) and allyl (YAJGEX; Benzeid et al., 2011). Three of these structures feature two independent mol­ecules in the asymmetric unit (see Table 3). For these last fifteen structures, Table 3 lists the largest distance of an atom in the quinoxaline moiety from its mean plane (d max) and the dihedral angle between the mean planes of the quinoxaline moiety and the attached phenyl ring (α). From these, it can be concluded that the deviation from planarity of the quinoxaline rings in the present structure is comparable to that in the related mol­ecules, while the rotation of the phenyl ring out of the plane of the quinoxaline is at the low end of the observed dihedral angles. Also presented in Table 3 are torsion angles for parts of the related mol­ecules corresponding to N2—C15—C16—C17 in the present structure.

Table 3. Selected geometrical parameters (Å, °) for related mol­ecules.

Refcode d max r.m.s.d. α a N—Cα—CβX b
AZAZEC 0.031 (1) 0.001 13.25 (4) −171.93 (8)
BUDMAP c 0.043 (1) 0.002 30.44 (7)
  0.023 (2) 0.002 19.31 (7)
ECUCOY 0.064 (1) 0.001 9.39 (6) −76.77 (15)
IDOSUR 0.055 (2) 0.002 30.77 (8) 66.3 (2)
ESUKUB 0.030 (1) 0.001 12.04 (5) −178.70 (9)
FOFCIQ 0.052 (1) 0.002 22.82 (10) −115.4 (2)
ILIRED 0.030 (2) 0.002 18.75 (10) 179.86 (18)
NIBXEE c 0.038 (5) 0.002 28.4 (2) 156.3 (5)
  0.38 (5) 0.002 23.1 (2) −154.2 (5)
PUGGII 0.035 (1) 0.002 28.39 (11) 178.12 (13)
RIRBOM 0.039 (1) 0.001 44.46 (4) −168.64 (8)
UDAMIZ 0.060 (2) 0.002 20.39 (4) 171.2 (2)
UFITEM 0.063 (1) 0.001 34.67 (6) 176.19 (11)
XEXWIJ 0.022 (2) 0.002 19.63 (7) −179.37 (14)
YAJGEX c 0.023 (1) 0.002 38.27 (10) 136.6 (2)
  0.037 (1) 0.002 37.14 (8) −132.6 (2)

Notes: (a) Dihedral angle between mean planes of quinoxaline and attached phenyl rings; (b) torsion angle for first three atoms of chain attached to quinoxaline ring nitro­gen; (c) Z = 2.

6. Synthesis and crystallization

To a solution of 3-phenyl­quinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in N,N-dimethylformamide (15 ml) were added 1,3-di­bromo­propane (0.12 ml, 1.125 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent and the solid obtained upon solvent removal was recrystallized from ethanol to afford colorless plate-like crystals of the title compound. 1H NMR (300 MHz, CDCl3) δ ppm: 1.95–2.03 (quin, 2H, CH2); 3.53 (t, 2H, N-CH2, J = 6Hz); 4.44 (t, 2H, O-CH2, J = 6Hz); 7.30–8.23 (m, 18H, CHarom). 13C NMR (75 MHz, CDCl3) δ ppm: 26.66 (CH2); 40.27 (N—CH2); 64.28(O—CH2); 113.36–130.76 (CHarom); 132.47–154.01 (Cq); 154.48 (C—O); 155.22 (C=O); 155.22 (C—O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atoms were refined isotropically.

Table 4. Experimental details.

Crystal data
Chemical formula C31H24N4O2
M r 484.54
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 120
a, b, c (Å) 8.8038 (6), 10.2277 (7), 14.0937 (10)
α, β, γ (°) 90.262 (1), 96.630 (1), 108.395 (1)
V3) 1195.00 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.41 × 0.34 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.84, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 22697, 6292, 4672
R int 0.029
(sin θ/λ)max−1) 0.685
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.129, 1.02
No. of reflections 6292
No. of parameters 430
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.40, −0.22

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989024001518/vm2295sup1.cif

e-80-00300-sup1.cif (676.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001518/vm2295Isup2.hkl

e-80-00300-Isup2.hkl (500.1KB, hkl)
e-80-00300-Isup3.cml (9.4KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001518/vm2295Isup3.cml

CCDC reference: 2332949

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, YR; methodology, NA and AS; investigation, MM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, EME and YR; supervision, YR; crystal structure determination and validation, JTM; resources, AYAA.

supplementary crystallographic information

Crystal data

C31H24N4O2 Z = 2
Mr = 484.54 F(000) = 508
Triclinic, P1 Dx = 1.347 Mg m3
a = 8.8038 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2277 (7) Å Cell parameters from 8578 reflections
c = 14.0937 (10) Å θ = 2.5–29.0°
α = 90.262 (1)° µ = 0.09 mm1
β = 96.630 (1)° T = 120 K
γ = 108.395 (1)° Plate, colourless
V = 1195.00 (14) Å3 0.41 × 0.34 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 6292 independent reflections
Radiation source: fine-focus sealed tube 4672 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.3333 pixels mm-1 θmax = 29.1°, θmin = 2.1°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −13→13
Tmin = 0.84, Tmax = 0.99 l = −19→19
22697 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: difference Fourier map
wR(F2) = 0.129 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0859P)2] where P = (Fo2 + 2Fc2)/3
6292 reflections (Δ/σ)max < 0.001
430 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.44841 (10) 0.63740 (8) 0.58310 (5) 0.02992 (19)
O2 0.83077 (9) 0.71124 (8) 0.31407 (5) 0.02503 (18)
N1 0.22753 (10) 0.87022 (9) 0.52543 (6) 0.0235 (2)
N2 0.43848 (10) 0.75671 (9) 0.44934 (6) 0.02157 (19)
N3 1.01284 (10) 0.59246 (9) 0.31524 (6) 0.0239 (2)
H3 0.3852 (17) 1.0016 (15) 0.1911 (11) 0.051 (4)*
N4 1.01195 (11) 0.63096 (9) 0.11706 (6) 0.0258 (2)
C1 0.37800 (12) 0.84656 (11) 0.39487 (7) 0.0229 (2)
C2 0.42362 (15) 0.88805 (12) 0.30498 (8) 0.0301 (3)
H2 0.5105 (16) 0.8643 (14) 0.2796 (9) 0.036 (3)*
C3 0.35202 (16) 0.97177 (13) 0.25365 (9) 0.0362 (3)
C4 0.23277 (16) 1.01518 (13) 0.28870 (9) 0.0349 (3)
H4 0.1835 (16) 1.0778 (14) 0.2494 (10) 0.041 (4)*
C5 0.19108 (14) 0.97842 (11) 0.37813 (8) 0.0287 (2)
H5 0.1082 (17) 1.0078 (14) 0.4048 (9) 0.040 (4)*
C6 0.26590 (12) 0.89688 (11) 0.43344 (7) 0.0233 (2)
C7 0.29185 (12) 0.79293 (10) 0.57833 (7) 0.0211 (2)
C8 0.39776 (12) 0.72245 (11) 0.53976 (7) 0.0217 (2)
C9 0.25817 (12) 0.77893 (11) 0.67950 (7) 0.0229 (2)
C10 0.17893 (14) 0.86482 (13) 0.71543 (8) 0.0313 (3)
H10 0.1495 (15) 0.9312 (13) 0.6724 (9) 0.030 (3)*
C11 0.14777 (16) 0.85979 (15) 0.80948 (9) 0.0374 (3)
H11 0.0946 (18) 0.9227 (16) 0.8322 (11) 0.053 (4)*
C12 0.19357 (14) 0.76913 (13) 0.87067 (8) 0.0329 (3)
H12 0.1671 (15) 0.7634 (13) 0.9406 (9) 0.034 (3)*
C13 0.27219 (13) 0.68479 (12) 0.83650 (8) 0.0290 (2)
H13 0.3018 (16) 0.6197 (14) 0.8811 (10) 0.040 (4)*
C14 0.30485 (13) 0.68925 (11) 0.74210 (8) 0.0253 (2)
H14 0.3544 (16) 0.6243 (14) 0.7217 (9) 0.035 (3)*
C15 0.54524 (12) 0.68814 (12) 0.41224 (8) 0.0232 (2)
H15A 0.5299 (14) 0.6874 (12) 0.3405 (9) 0.025 (3)*
H15B 0.5145 (14) 0.5943 (13) 0.4317 (8) 0.024 (3)*
C16 0.72111 (12) 0.75993 (12) 0.45135 (8) 0.0239 (2)
H16A 0.7551 (14) 0.8581 (14) 0.4330 (9) 0.032 (3)*
H16B 0.7306 (14) 0.7557 (12) 0.5222 (9) 0.025 (3)*
C17 0.83182 (13) 0.68895 (12) 0.41570 (7) 0.0247 (2)
H17A 0.9421 (15) 0.7312 (12) 0.4463 (9) 0.028 (3)*
H17B 0.7929 (14) 0.5849 (13) 0.4237 (8) 0.028 (3)*
C18 1.10461 (13) 0.56007 (11) 0.16404 (8) 0.0253 (2)
C19 1.19802 (14) 0.50343 (12) 0.11175 (9) 0.0306 (3)
H19 1.1921 (16) 0.5151 (14) 0.0421 (10) 0.040 (4)*
C20 1.28637 (14) 0.42787 (12) 0.15725 (9) 0.0334 (3)
H20 1.3517 (17) 0.3897 (14) 0.1214 (10) 0.044 (4)*
C21 1.28456 (13) 0.40650 (12) 0.25544 (9) 0.0330 (3)
H21 1.3445 (16) 0.3504 (14) 0.2869 (9) 0.037 (3)*
C22 1.19463 (13) 0.46076 (12) 0.30774 (9) 0.0294 (3)
H22 1.1904 (15) 0.4469 (13) 0.3764 (9) 0.033 (3)*
C23 1.10319 (12) 0.53882 (11) 0.26299 (8) 0.0243 (2)
C24 0.92400 (12) 0.65636 (11) 0.26811 (7) 0.0221 (2)
C25 0.91928 (12) 0.67574 (11) 0.16611 (7) 0.0228 (2)
C26 0.81246 (13) 0.74470 (11) 0.11251 (7) 0.0234 (2)
C27 0.65431 (13) 0.72358 (12) 0.13098 (8) 0.0288 (2)
H27 0.6113 (15) 0.6636 (13) 0.1822 (9) 0.033 (3)*
C28 0.55596 (14) 0.78379 (13) 0.07494 (8) 0.0315 (3)
H28 0.4445 (16) 0.7639 (13) 0.0886 (9) 0.036 (3)*
C29 0.61433 (14) 0.86632 (12) 0.00127 (8) 0.0300 (3)
H29 0.5435 (15) 0.9110 (13) −0.0411 (9) 0.034 (3)*
C30 0.77094 (15) 0.88709 (12) −0.01796 (8) 0.0300 (3)
H30 0.8131 (15) 0.9449 (13) −0.0704 (9) 0.035 (3)*
C31 0.86847 (14) 0.82589 (12) 0.03672 (8) 0.0272 (2)
H31 0.9791 (16) 0.8377 (13) 0.0246 (9) 0.032 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0366 (4) 0.0343 (4) 0.0290 (4) 0.0232 (4) 0.0106 (3) 0.0100 (3)
O2 0.0259 (4) 0.0336 (4) 0.0206 (4) 0.0158 (3) 0.0055 (3) 0.0026 (3)
N1 0.0238 (4) 0.0232 (5) 0.0249 (5) 0.0102 (4) 0.0006 (3) −0.0003 (4)
N2 0.0226 (4) 0.0230 (4) 0.0222 (4) 0.0108 (3) 0.0052 (3) 0.0029 (3)
N3 0.0208 (4) 0.0257 (5) 0.0261 (5) 0.0087 (4) 0.0026 (3) −0.0001 (4)
N4 0.0253 (5) 0.0282 (5) 0.0261 (5) 0.0112 (4) 0.0039 (4) −0.0007 (4)
C1 0.0235 (5) 0.0211 (5) 0.0232 (5) 0.0066 (4) 0.0000 (4) 0.0020 (4)
C2 0.0317 (6) 0.0332 (6) 0.0269 (6) 0.0116 (5) 0.0053 (4) 0.0055 (5)
C3 0.0443 (7) 0.0375 (7) 0.0272 (6) 0.0140 (6) 0.0025 (5) 0.0085 (5)
C4 0.0446 (7) 0.0305 (6) 0.0305 (6) 0.0173 (5) −0.0065 (5) 0.0041 (5)
C5 0.0323 (6) 0.0246 (6) 0.0305 (6) 0.0138 (5) −0.0041 (5) −0.0021 (4)
C6 0.0248 (5) 0.0200 (5) 0.0250 (5) 0.0084 (4) −0.0011 (4) −0.0005 (4)
C7 0.0189 (5) 0.0208 (5) 0.0246 (5) 0.0078 (4) 0.0026 (4) −0.0004 (4)
C8 0.0209 (5) 0.0221 (5) 0.0240 (5) 0.0093 (4) 0.0045 (4) 0.0028 (4)
C9 0.0188 (5) 0.0246 (5) 0.0251 (5) 0.0062 (4) 0.0038 (4) −0.0011 (4)
C10 0.0316 (6) 0.0372 (7) 0.0315 (6) 0.0191 (5) 0.0061 (5) 0.0015 (5)
C11 0.0356 (7) 0.0482 (8) 0.0361 (7) 0.0228 (6) 0.0086 (5) −0.0046 (6)
C12 0.0295 (6) 0.0435 (7) 0.0264 (6) 0.0113 (5) 0.0072 (4) −0.0031 (5)
C13 0.0293 (6) 0.0314 (6) 0.0263 (6) 0.0086 (5) 0.0059 (4) 0.0031 (5)
C14 0.0243 (5) 0.0260 (6) 0.0271 (5) 0.0091 (4) 0.0066 (4) 0.0015 (4)
C15 0.0226 (5) 0.0264 (6) 0.0241 (5) 0.0121 (4) 0.0050 (4) 0.0004 (4)
C16 0.0236 (5) 0.0272 (6) 0.0224 (5) 0.0097 (4) 0.0044 (4) 0.0005 (4)
C17 0.0222 (5) 0.0333 (6) 0.0206 (5) 0.0113 (4) 0.0040 (4) 0.0030 (4)
C18 0.0218 (5) 0.0258 (5) 0.0288 (6) 0.0085 (4) 0.0029 (4) −0.0024 (4)
C19 0.0284 (6) 0.0344 (6) 0.0315 (6) 0.0131 (5) 0.0050 (5) −0.0047 (5)
C20 0.0249 (5) 0.0343 (6) 0.0436 (7) 0.0140 (5) 0.0021 (5) −0.0099 (5)
C21 0.0248 (6) 0.0311 (6) 0.0447 (7) 0.0143 (5) −0.0043 (5) −0.0045 (5)
C22 0.0247 (5) 0.0313 (6) 0.0329 (6) 0.0119 (5) −0.0021 (4) −0.0010 (5)
C23 0.0201 (5) 0.0238 (5) 0.0283 (5) 0.0070 (4) 0.0007 (4) −0.0024 (4)
C24 0.0205 (5) 0.0236 (5) 0.0228 (5) 0.0071 (4) 0.0045 (4) −0.0001 (4)
C25 0.0223 (5) 0.0234 (5) 0.0229 (5) 0.0074 (4) 0.0034 (4) 0.0006 (4)
C26 0.0267 (5) 0.0247 (5) 0.0206 (5) 0.0109 (4) 0.0023 (4) −0.0012 (4)
C27 0.0269 (5) 0.0351 (6) 0.0255 (6) 0.0111 (5) 0.0037 (4) 0.0047 (5)
C28 0.0259 (6) 0.0412 (7) 0.0299 (6) 0.0146 (5) 0.0021 (4) 0.0025 (5)
C29 0.0350 (6) 0.0307 (6) 0.0269 (6) 0.0158 (5) −0.0012 (4) −0.0004 (5)
C30 0.0384 (6) 0.0290 (6) 0.0245 (5) 0.0128 (5) 0.0052 (5) 0.0030 (5)
C31 0.0298 (6) 0.0293 (6) 0.0254 (5) 0.0123 (5) 0.0065 (4) 0.0017 (4)

Geometric parameters (Å, º)

O1—C8 1.2309 (12) C13—H13 0.991 (13)
O2—C24 1.3484 (12) C14—H14 0.961 (13)
O2—C17 1.4509 (12) C15—C16 1.5238 (15)
N1—C7 1.3007 (12) C15—H15A 1.005 (12)
N1—C6 1.3841 (13) C15—H15B 0.962 (12)
N2—C8 1.3804 (13) C16—C17 1.5119 (15)
N2—C1 1.3922 (12) C16—H16A 0.997 (13)
N2—C15 1.4748 (13) C16—H16B 0.995 (12)
N3—C24 1.2987 (12) C17—H17A 0.976 (13)
N3—C23 1.3722 (13) C17—H17B 1.021 (12)
N4—C25 1.3102 (13) C18—C19 1.4113 (15)
N4—C18 1.3721 (13) C18—C23 1.4132 (15)
C1—C2 1.4005 (15) C19—C20 1.3720 (16)
C1—C6 1.4057 (15) C19—H19 0.987 (14)
C2—C3 1.3766 (16) C20—C21 1.4031 (18)
C2—H2 0.976 (14) C20—H20 0.972 (15)
C3—C4 1.3983 (18) C21—C22 1.3735 (16)
C3—H3 0.980 (15) C21—H21 0.972 (13)
C4—C5 1.3743 (17) C22—C23 1.4057 (14)
C4—H4 1.014 (13) C22—H22 0.982 (13)
C5—C6 1.4040 (14) C24—C25 1.4497 (14)
C5—H5 0.982 (14) C25—C26 1.4873 (14)
C7—C9 1.4881 (15) C26—C31 1.3946 (16)
C7—C8 1.4907 (14) C26—C27 1.3955 (15)
C9—C14 1.3964 (14) C27—C28 1.3913 (15)
C9—C10 1.4068 (15) C27—H27 0.980 (13)
C10—C11 1.3822 (17) C28—C29 1.3828 (17)
C10—H10 0.987 (12) C28—H28 0.979 (13)
C11—C12 1.3889 (18) C29—C30 1.3862 (17)
C11—H11 0.979 (16) C29—H29 1.025 (13)
C12—C13 1.3803 (16) C30—C31 1.3834 (15)
C12—H12 1.036 (13) C30—H30 0.981 (13)
C13—C14 1.3912 (15) C31—H31 0.978 (13)
C24—O2—C17 116.19 (8) C17—C16—C15 111.90 (9)
C7—N1—C6 120.18 (9) C17—C16—H16A 109.3 (7)
C8—N2—C1 122.21 (8) C15—C16—H16A 110.2 (7)
C8—N2—C15 115.91 (8) C17—C16—H16B 107.8 (7)
C1—N2—C15 121.84 (8) C15—C16—H16B 107.8 (7)
C24—N3—C23 116.53 (9) H16A—C16—H16B 109.8 (10)
C25—N4—C18 118.08 (9) O2—C17—C16 106.67 (8)
N2—C1—C2 123.22 (10) O2—C17—H17A 107.9 (7)
N2—C1—C6 117.35 (9) C16—C17—H17A 110.4 (7)
C2—C1—C6 119.43 (10) O2—C17—H17B 107.4 (7)
C3—C2—C1 119.53 (11) C16—C17—H17B 112.7 (7)
C3—C2—H2 118.9 (7) H17A—C17—H17B 111.5 (10)
C1—C2—H2 121.5 (7) N4—C18—C19 119.25 (10)
C2—C3—C4 121.45 (11) N4—C18—C23 121.00 (9)
C2—C3—H3 119.3 (8) C19—C18—C23 119.71 (10)
C4—C3—H3 119.2 (8) C20—C19—C18 119.79 (11)
C5—C4—C3 119.29 (11) C20—C19—H19 121.9 (8)
C5—C4—H4 121.2 (8) C18—C19—H19 118.2 (8)
C3—C4—H4 119.4 (8) C19—C20—C21 120.47 (11)
C4—C5—C6 120.49 (11) C19—C20—H20 119.8 (8)
C4—C5—H5 121.1 (8) C21—C20—H20 119.7 (8)
C6—C5—H5 118.4 (8) C22—C21—C20 120.72 (11)
N1—C6—C5 118.29 (9) C22—C21—H21 119.1 (8)
N1—C6—C1 122.12 (9) C20—C21—H21 120.1 (8)
C5—C6—C1 119.59 (10) C21—C22—C23 120.01 (11)
N1—C7—C9 117.64 (9) C21—C22—H22 122.5 (7)
N1—C7—C8 121.39 (9) C23—C22—H22 117.4 (7)
C9—C7—C8 120.97 (9) N3—C23—C22 119.95 (10)
O1—C8—N2 119.63 (9) N3—C23—C18 120.75 (9)
O1—C8—C7 124.16 (9) C22—C23—C18 119.30 (10)
N2—C8—C7 116.22 (8) N3—C24—O2 120.23 (9)
C14—C9—C10 117.79 (10) N3—C24—C25 123.76 (9)
C14—C9—C7 124.24 (9) O2—C24—C25 116.00 (9)
C10—C9—C7 117.93 (9) N4—C25—C24 119.73 (9)
C11—C10—C9 120.94 (11) N4—C25—C26 117.14 (9)
C11—C10—H10 120.7 (7) C24—C25—C26 123.13 (9)
C9—C10—H10 118.3 (7) C31—C26—C27 118.68 (10)
C10—C11—C12 120.62 (11) C31—C26—C25 118.79 (10)
C10—C11—H11 118.5 (9) C27—C26—C25 122.38 (10)
C12—C11—H11 120.9 (9) C28—C27—C26 120.18 (11)
C13—C12—C11 119.04 (11) C28—C27—H27 119.9 (7)
C13—C12—H12 120.4 (7) C26—C27—H27 119.9 (7)
C11—C12—H12 120.6 (7) C29—C28—C27 120.44 (11)
C12—C13—C14 120.89 (11) C29—C28—H28 121.7 (7)
C12—C13—H13 117.6 (8) C27—C28—H28 117.8 (7)
C14—C13—H13 121.5 (8) C28—C29—C30 119.74 (10)
C13—C14—C9 120.71 (10) C28—C29—H29 121.6 (7)
C13—C14—H14 116.8 (8) C30—C29—H29 118.6 (7)
C9—C14—H14 122.4 (8) C31—C30—C29 120.03 (11)
N2—C15—C16 111.24 (9) C31—C30—H30 119.7 (7)
N2—C15—H15A 108.8 (7) C29—C30—H30 120.3 (7)
C16—C15—H15A 110.8 (7) C30—C31—C26 120.91 (11)
N2—C15—H15B 108.6 (7) C30—C31—H31 122.1 (7)
C16—C15—H15B 108.8 (7) C26—C31—H31 117.0 (7)
H15A—C15—H15B 108.5 (10)
C8—N2—C1—C2 176.79 (10) N2—C15—C16—C17 178.73 (8)
C15—N2—C1—C2 −5.61 (16) C24—O2—C17—C16 179.54 (8)
C8—N2—C1—C6 −3.17 (15) C15—C16—C17—O2 68.47 (12)
C15—N2—C1—C6 174.43 (9) C25—N4—C18—C19 176.17 (10)
N2—C1—C2—C3 176.76 (10) C25—N4—C18—C23 −1.52 (15)
C6—C1—C2—C3 −3.29 (17) N4—C18—C19—C20 −177.53 (10)
C1—C2—C3—C4 −0.84 (19) C23—C18—C19—C20 0.19 (17)
C2—C3—C4—C5 2.87 (19) C18—C19—C20—C21 −0.02 (18)
C3—C4—C5—C6 −0.71 (18) C19—C20—C21—C22 −0.04 (18)
C7—N1—C6—C5 178.67 (9) C20—C21—C22—C23 −0.08 (18)
C7—N1—C6—C1 −2.17 (15) C24—N3—C23—C22 −176.01 (9)
C4—C5—C6—N1 175.80 (10) C24—N3—C23—C18 3.45 (15)
C4—C5—C6—C1 −3.38 (16) C21—C22—C23—N3 179.71 (10)
N2—C1—C6—N1 6.18 (15) C21—C22—C23—C18 0.24 (16)
C2—C1—C6—N1 −173.78 (10) N4—C18—C23—N3 −2.09 (16)
N2—C1—C6—C5 −174.66 (9) C19—C18—C23—N3 −179.76 (9)
C2—C1—C6—C5 5.38 (15) N4—C18—C23—C22 177.37 (9)
C6—N1—C7—C9 174.31 (9) C19—C18—C23—C22 −0.30 (16)
C6—N1—C7—C8 −4.74 (15) C23—N3—C24—O2 179.55 (9)
C1—N2—C8—O1 176.52 (9) C23—N3—C24—C25 −1.49 (15)
C15—N2—C8—O1 −1.21 (14) C17—O2—C24—N3 −2.55 (14)
C1—N2—C8—C7 −3.15 (14) C17—O2—C24—C25 178.42 (9)
C15—N2—C8—C7 179.12 (9) C18—N4—C25—C24 3.46 (15)
N1—C7—C8—O1 −172.29 (10) C18—N4—C25—C26 −176.34 (9)
C9—C7—C8—O1 8.70 (16) N3—C24—C25—N4 −2.08 (16)
N1—C7—C8—N2 7.37 (15) O2—C24—C25—N4 176.92 (9)
C9—C7—C8—N2 −171.65 (9) N3—C24—C25—C26 177.71 (10)
N1—C7—C9—C14 173.29 (10) O2—C24—C25—C26 −3.30 (15)
C8—C7—C9—C14 −7.66 (16) N4—C25—C26—C31 −35.53 (14)
N1—C7—C9—C10 −8.94 (15) C24—C25—C26—C31 144.68 (10)
C8—C7—C9—C10 170.12 (10) N4—C25—C26—C27 139.95 (11)
C14—C9—C10—C11 −0.34 (18) C24—C25—C26—C27 −39.84 (15)
C7—C9—C10—C11 −178.26 (11) C31—C26—C27—C28 −0.54 (16)
C9—C10—C11—C12 −0.3 (2) C25—C26—C27—C28 −176.02 (10)
C10—C11—C12—C13 0.6 (2) C26—C27—C28—C29 −0.78 (17)
C11—C12—C13—C14 −0.34 (18) C27—C28—C29—C30 1.20 (18)
C12—C13—C14—C9 −0.27 (18) C28—C29—C30—C31 −0.29 (17)
C10—C9—C14—C13 0.60 (16) C29—C30—C31—C26 −1.05 (17)
C7—C9—C14—C13 178.38 (10) C27—C26—C31—C30 1.45 (17)
C8—N2—C15—C16 −81.23 (11) C25—C26—C31—C30 177.10 (10)
C1—N2—C15—C16 101.04 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1 0.961 (14) 2.197 (13) 2.8225 (14) 121.7 (10)
C15—H15B···O1i 0.962 (12) 2.503 (12) 3.3484 (13) 146.6 (9)
C17—H17A···N1ii 0.976 (13) 2.581 (13) 3.5523 (14) 173.3 (10)
C17—H17B···O1i 1.021 (12) 2.568 (13) 3.4700 (15) 147.1 (9)
C21—H21···O1iii 0.971 (14) 2.404 (14) 3.2166 (15) 140.9 (11)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+1.

References

  1. Abad, N., Al-Ostoot, F. H., Ashraf, S., Karim, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, E. M. & Youssef Ramli, Y. (2023a). Heliyon 9, e21312. https://doi.org/10.1016/j.heliyon.2023.e21312. [DOI] [PMC free article] [PubMed]
  2. Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021c). Acta Cryst. E77, 1037–1042. [DOI] [PMC free article] [PubMed]
  3. Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.
  4. Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.
  5. Abad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021a). Acta Cryst. E77, 643–646. [DOI] [PMC free article] [PubMed]
  6. Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021d). Z. Krist. New Cryst. Struct. 236, 173.
  7. Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622.
  8. Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). J. Mol. Struct. 1221, 128727.
  9. Abad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7, x220693. [DOI] [PMC free article] [PubMed]
  10. Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.
  11. Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021b). J. Mol. Struct. 1232, 130004.
  12. Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22. [DOI] [PMC free article] [PubMed]
  13. Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990. [DOI] [PMC free article] [PubMed]
  14. Benzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009a). Acta Cryst. E65, o2323. [DOI] [PMC free article] [PubMed]
  15. Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685. [DOI] [PMC free article] [PubMed]
  16. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  17. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  18. Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235. [DOI] [PMC free article] [PubMed]
  19. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  20. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  21. Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Der. Pharma Chem. 7, 36–45.
  22. Missioui, M., Said, M., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022). J. Mol. Struct. 1247, 131420.
  23. Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  28. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989024001518/vm2295sup1.cif

e-80-00300-sup1.cif (676.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001518/vm2295Isup2.hkl

e-80-00300-Isup2.hkl (500.1KB, hkl)
e-80-00300-Isup3.cml (9.4KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001518/vm2295Isup3.cml

CCDC reference: 2332949

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES