Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 6;80(Pt 3):267–270. doi: 10.1107/S2056989024001051

Structural characterization of a new samarium–sodium heterometallic coordination polymer

Ashley M Hastings a,, Ashley Williams a,§, Robert G Surbella III a, Amy E Hixon b, Ana Arteaga a,*
Editor: L Suescunc
PMCID: PMC10915667  PMID: 38456057

The crystal structure is reported of a new heterometallic samarium compound comprised of alternating SmIII and NaI metal centers bridged by o-vanillin ligands to create a helical chain.

Keywords: crystal structure, samarium, o-vanillin, coordination polymer, lanthanide chemistry

Abstract

Lanthanide-containing materials are of inter­est in the field of crystal engin­eering because of their unique properties and distinct structure types. In this context, a new samarium–sodium heterometallic coordination polymer, poly[tetra­kis­(μ2-2-formyl-6-meth­oxy­phenolato)samarium(III)sodium(I)], {[SmNa(C8H7O3)4]·solvent} n (Sm-1), was synthesized and crystallized via slow evaporation from a mixture of ethanol and aceto­nitrile. The compound features alternating SmIII and NaI ions, which are linked by ortho-vanillin (o-vanillin) ligands to form a mono-periodic chain-like coordination polymer. The chains propagate along the [001] direction. Residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied. The structural, vibrational, and optical properties are reported.

1. Chemical context

The synthesis of lanthanide compounds with 2-hy­droxy-3-meth­oxy benzaldehyde (o-vanillin) ligand derivatives is of great inter­est in the field of crystal engineering because of their photophysical and magnetic properties (Chaudhari et al., 2012; Song et al., 2017; Novitchi et al., 2012; Albrecht, 2001). In crystal engineering, the ligand of choice has a large effect on the dimensionality of lanthanide-containing compounds owing to their high-coordination environments (Bunzli & Piguet, 2002). For example, ligands with multiple binding sites are ideal because of their ability to bridge metal centers or act as capping ligands (Heuer-Jungemann et al., 2019; Cheng & Yang, 2017). o-Vanillin is a popular ligand for heterometallic synthesis due to its ability to generate a variety of compounds through its multiple binding sites (carboxyl­ate and meth­oxy groups; Andruh, 2015). While there is an extensive library of lanthanide and o-vanillin-containing compounds, ranging in dimensionality from small mol­ecules to coordination polymers (CPs) and metal organic frameworks (MOFs) (CSD, version 2021.3.0; Groom et al., 2016), we are not aware of any reports containing o-vanillin, SmIII and NaI, and have found only a single report containing both o-vanillin and SmIII (Griffiths et al., 2016). However, heterometallic lanthanide–transition-metal com­pounds with o-vanillin have been reported (Costes et al., 2015, 2018; Kırpık et al., 2019). These compounds crystallize as discrete mol­ecular dinuclear units. To the best of our knowledge, the only reported lanthanide–NaIo-vanillin-containing compound crystallized as an aggregate structure with a hydro­phobic cavity (Li et al., 2022). The lanthanide–NaIo-vanillin compound isolated by Li et al. is vastly different from the structure described here, [SmNa(C8H7O3)4]·solvent (Sm-1). Herein we report the synthesis, crystal structure, and characterization of an inter­esting new samarium–sodium heterometallic CP synthesized with o-vanillin ligands. 1.

2. Structural commentary

The compound [SmNa(C8H7O3)4]·solvent (Sm-1) crystallizes in the P21/c space group. The asymmetric unit features one crystallographically unique SmIII and NaI metal center, and four o-vanillin ligands (Fig. 1). Each metal center is coordinated by eight oxygen atoms, each displaying a distorted square-anti­prismatic geometry with a local C 1 symmetry (Fig. 1). The SmIII metal centers are bound to four o-vanillin ligands (κ2) with an average Sm—O bond length of 2.395 (2) Å. The NaI cations are bound to six o-vanillin ligands, two of which are bidentate (κ2) and four are monodentate (κ1), with average Na—O bond lengths of 2.530 (4) Å. The metal-to-oxygen bond distances are typical of those reported in similar systems (Ma et al., 2021; Peng et al., 2011). The SmIII and NaI atoms alternate and are bridged together by three μ2-o-vanillin ligands that each display unique bonding environments through the phenoxo, aldehydic, and meth­oxy groups (see Fig. S1 in the supporting information). The first o-vanillin ligand binds the alternating SmIII and NaI atoms through the phenoxo and aldehydic groups, leaving the meth­oxy group uncoordinated, Fig. S1a. The second o-vanillin ligand bridges the SmIII and NaI atoms using the phenolic group, with the aldehydic and meth­oxy groups binding solely to the SmIII and NaI atoms, respectively, Fig. S1b. Lastly, the third o-vanillin ligand bridges the alternating SmIII and NaI atoms via the aldehydic and phenoxo groups while the meth­oxy group binds solely to an adjacent NaI atom, Fig. S1c. This creates a bimetallic helical chain that propagates along the [001] direction (Fig. 2). The potential solvent area volume of Sm-1 is 10.6% per unit cell (calculated using PLATON; Spek, 2020).

Figure 1.

Figure 1

Top: The asymmetric unit of Sm-1. The Sm, Na, C, and O atoms are depicted as orange, teal, black, and red ellipsoids, respectively. The displacement ellipsoids are drawn at 50% probability. The hydrogen atoms are removed for clarity. Bottom: The coordination environment of the SmIII and NaI metal centers, represented as orange and teal polyhedra, respectively.

Figure 2.

Figure 2

Polyhedral representation of Sm-1 showing the propagation of the chains along the [001] direction. The SmIII and NaI atoms are represented as orange and teal polyhedra, respectively. The oxygen atoms are represented by red spheres and the carbon atoms are represented in stick form. Hydrogen atoms have been omitted for clarity.

3. Supra­molecular features

The structure was analyzed for non-covalent inter­actions and no evidence for π–π inter­actions was observed. However, a series of close atom contacts (C—H⋯C) are present between adjacent chains (Table 1). The supra­molecular chains are stabilized primarily through C—H⋯C inter­actions, allowing the stacking of adjacent chains in the structure.

Table 1. Atom pairs and distances (Å).

Atom pair Distance
C11—H11⋯C4 2.716
C16—H16B⋯C12 2.851
C16—H16B⋯C13 2.888

4. Database survey

The o-vanillin ligand is widely used in coordination chemistry with over 70 structures containing o-vanillin and lanthanides reported in the Cambridge Structural Database (CSD, version 2021.3.0; Groom et al., 2016). A survey of structures containing samarium and o-vanillin resulted in only one compound, [Ni2Sm2(C14H11NO3)4(C8O3H7)2(H2O)2]·4CH3CN, a heterometallic and heteroleptic cluster containing SmIII and NaI metal centers bound by 2-(E)-{[(2-hy­droxy­phen­yl)imino]­meth­yl}-6-meth­oxy­phenol ligands (Griffiths et al., 2016). In this compound, the o-vanillin ligands act as capping ligands and are bidentate (κ2) in fashion, whereas in Sm-1, the o-vanillin ligands act as bridging ligands that connect the SmIII and NaI atoms to form a mono-periodic CP.

5. Synthesis and crystallization

The compound Sm-1 was synthesized by dissolving 10 mg of SmIII chloride hexa­hydrate (SmCl3·6H2O, Strem Chemicals, 99.9%) in 208.5 µL of hydro­chloric acid (HCl, Sigma Aldrich, 37% w/w). The mixture was slowly heated to dryness, and the residue was dissolved in 500 µL of hydro­bromic acid (HBr, Aldrich, 48% w/w ACS reagent). The solution was gently heated to dryness and once cooled, the residue was dissolved in 655 µL ethanol (Fisher, 200 proof) to form a 0.042 M SmIII solution with a pH near 1.4 (Solution A). A 0.105 M o-vanillin solution (Solution B) was prepared by dissolving o-vanillin (TCI, >99.0%) in an ethanol/aceto­nitrile (1:1, aceto­nitrile: Fisher, 99.5% certified ACS) mixture. The following were added to a 4 mL glass reaction vial: 100 µL Solution A, 400 µL Solution B, and 33.4 µL 0.5 M NaOH (aqueous, Sigma Aldrich, >98.0%), yielding a yellow solution with a pH of 7.7. The vial was covered with parafilm that had a small slash in it to allow slow evaporation of the solvent. After 4 days, yellow acicular crystals grew from the reaction solution in radial bursts (Fig. 3). The synthesis of Sm-1 has an 80% yield. Several synthetic variations were explored to improve the single-crystal diffraction quality. Adding an additional equivalent of NaOH brought the initial pH to ∼8.5 and yielded the same phase, but the crystals were too small for single-crystal studies. Decreasing the NaOH equivalents (in the pH range of 2–4) did not yield any quality crystalline product upon evaporation. In addition, simply starting with SmCl3·6H2O salt, instead of the HCl/HBr Sm stock protocol, indeed crystallized Sm-1; however, these were also too small for individual manipulation. Although not reported here, the synthesis was developed as an analogue for transuranic chemistry, in which strong acid stock solutions are a practicality and serve as redox control.

Figure 3.

Figure 3

Microscope image of Sm-1 crystals with scale for reference.

6. Experimental details

Sm-1 crystals were harvested, washed with ethanol, and mounted to MiTeGen MicroMounts from immersion oil. Data were collected on a Bruker D8 Venture diffractometer equipped with a Photon III detector using a Mo anode micro-focus source (diamond IμS 3.0) and φ and ω scans, at 100 K. The collection strategy was calculated factoring in the known symmetry and collected with at least triplicate multiplicity. The data were reduced using SAINT (Bruker, 2014) and multi-scan absorption correction was applied using SADABS (Krause et al., 2015), both within the APEX4 software (Bruker, 2014). Using Olex2 (Dolomanov et al., 2009), the structure was solved with the SHELXT (Sheldrick, 2015a ) structure solution program and refined with the SHELXL (Sheldrick, 2015b ) refinement package using least-squares minimization. Additional experimental and instrumentation details on powder X-ray diffraction, infrared spectroscopy, and diffuse reflectance spectroscopy can be found in the supporting information.

7. Refinement

Crystal data, data collection, and structure refinement details of Sm-1 are summarized in Table 2. The H atoms associated with the carbon atoms were affixed to the respective parent atoms using a riding model. Residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied via PLATON (Spek, 2015, 2020). A total of 47 electrons were accounted for by SQUEEZE and removed. This amounts to about 2 solvent mol­ecules (aceto­nitrile and/or ethanol) per unit cell. While most of the reaction medium was aceto­nitrile and ethanol, water mol­ecules are also possible from the aqueous NaOH spike. The Sm-1 single crystals diffracted weakly, perhaps owing to the small crystal size. Attempts to crystallize and select higher quality single crystals were unsuccessful. Bond-valence analysis on the metal centers yields summations of 3.30 and 0.98 for SmIII and NaI, respectively (Brown & Altermatt, 1985; Yee et al., 2019).

Table 2. Experimental details.

Crystal data
Chemical formula [SmNa(C8H7O3)4][+solvent]
M r 777.88
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.5512 (7), 24.4768 (14), 12.8355 (6)
β (°) 115.742 (2)
V3) 3268.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.87
Crystal size (mm) 0.05 × 0.01 × 0.002
 
Data collection
Diffractometer Bruker D8 Venture with photon detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
No. of measured, independent and observed [I > 2σ(I)] reflections 41476, 6204, 4562
R int 0.147
(sin θ/λ)max−1) 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.108, 1.02
No. of reflections 6204
No. of parameters 419
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −1.13

Computer programs: APEX4 and SAINT (Bruker, 2014), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001051/oo2002sup1.cif

e-80-00267-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001051/oo2002Isup2.hkl

e-80-00267-Isup2.hkl (493.3KB, hkl)
e-80-00267-Isup4.mol (4.3KB, mol)

Supporting information file. DOI: 10.1107/S2056989024001051/oo2002Isup4.mol

e-80-00267-sup3.docx (1.9MB, docx)

Word document (Characterization details, experimental diffractogram of Sm-1, and FTIR spectrum and diffuse reflectance spectrum of Sm-1 are provided.). DOI: 10.1107/S2056989024001051/oo2002sup3.docx

CCDC reference: 2329845

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Aaron D. Nicholas for his feedback in preparing this manuscript.

supplementary crystallographic information

Crystal data

[SmNa(C8H7O3)4][+solvent] F(000) = 1556
Mr = 777.88 Dx = 1.581 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.5512 (7) Å Cell parameters from 6204 reflections
b = 24.4768 (14) Å θ = 2.4–25.1°
c = 12.8355 (6) Å µ = 1.87 mm1
β = 115.742 (2)° T = 100 K
V = 3268.9 (3) Å3 Needle, yellow
Z = 4 0.05 × 0.01 × 0.002 mm

Data collection

Bruker D8 Venture with photon detector diffractometer 4562 reflections with I > 2σ(I)
Radiation source: Microfocus sealed source Rint = 0.147
φ and ω scans θmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −14→14
k = −29→29
41476 measured reflections l = −15→15
6204 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0186P)2 + 17.6315P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
6204 reflections Δρmax = 0.76 e Å3
419 parameters Δρmin = −1.13 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sm1 0.54972 (3) 0.69282 (2) 0.62323 (3) 0.01414 (10)
Na2 0.5507 (2) 0.70628 (10) 0.9140 (2) 0.0195 (6)
O11 0.3989 (4) 0.75247 (18) 0.4906 (4) 0.0175 (10)
O9 0.7502 (4) 0.84841 (19) 0.5347 (4) 0.0222 (10)
O6 0.4809 (4) 0.61822 (18) 0.9430 (4) 0.0194 (10)
O3 0.8796 (5) 0.55301 (19) 0.7600 (4) 0.0270 (11)
O8 0.6755 (4) 0.76769 (19) 0.6213 (4) 0.0219 (10)
O12 0.2499 (4) 0.79508 (19) 0.2874 (4) 0.0252 (11)
O5 0.4883 (4) 0.64323 (18) 0.7484 (4) 0.0202 (10)
O2 0.6974 (4) 0.62447 (19) 0.6429 (4) 0.0223 (11)
O10 0.4681 (4) 0.75359 (18) 0.7262 (4) 0.0203 (10)
O7 0.7195 (5) 0.70785 (18) 0.8182 (4) 0.0246 (11)
O1 0.5810 (4) 0.6879 (2) 0.4454 (4) 0.0249 (11)
O4 0.3873 (5) 0.62479 (19) 0.5110 (4) 0.0252 (11)
C19 1.0010 (6) 0.7857 (3) 0.8527 (6) 0.0229 (15)
H19 1.056559 0.770846 0.925847 0.027*
C4 0.9473 (6) 0.5771 (3) 0.5065 (6) 0.0242 (15)
H4 1.006658 0.566356 0.477312 0.029*
C22 0.8385 (6) 0.8297 (3) 0.6396 (6) 0.0192 (14)
C15 0.4218 (6) 0.6003 (2) 0.7474 (6) 0.0145 (13)
C6 0.8746 (6) 0.5710 (3) 0.6568 (6) 0.0199 (14)
C21 0.9621 (6) 0.8489 (3) 0.6987 (6) 0.0211 (15)
H21 0.991966 0.877738 0.667205 0.025*
C7 0.7722 (6) 0.6096 (3) 0.5976 (6) 0.0160 (13)
C23 0.7901 (6) 0.7854 (3) 0.6825 (6) 0.0180 (14)
C18 0.8738 (6) 0.7657 (3) 0.7937 (6) 0.0195 (14)
C30 0.2253 (6) 0.8102 (3) 0.3781 (5) 0.0196 (13)
C25 0.3742 (7) 0.7852 (3) 0.6983 (6) 0.0214 (15)
H25 0.357064 0.799463 0.758981 0.026*
C31 0.3105 (6) 0.7860 (3) 0.4853 (6) 0.0185 (14)
C17 0.8289 (7) 0.7282 (3) 0.8549 (6) 0.0203 (15)
H17 0.888831 0.717983 0.930675 0.024*
C20 1.0441 (7) 0.8258 (3) 0.8057 (6) 0.0268 (16)
H20 1.130164 0.838390 0.845323 0.032*
C29 0.1314 (7) 0.8462 (3) 0.3702 (7) 0.0271 (16)
H29 0.077035 0.861599 0.297210 0.033*
C3 0.8513 (6) 0.6128 (3) 0.4460 (6) 0.0215 (15)
H3 0.843275 0.626777 0.374140 0.026*
C26 0.2898 (6) 0.8020 (3) 0.5821 (6) 0.0196 (14)
C14 0.4154 (6) 0.5839 (3) 0.8518 (6) 0.0185 (14)
C5 0.9586 (6) 0.5560 (3) 0.6128 (6) 0.0216 (15)
H5 1.025602 0.530931 0.654560 0.026*
C28 0.1143 (7) 0.8608 (3) 0.4684 (7) 0.0330 (19)
H28 0.047552 0.885288 0.461531 0.040*
C9 0.3416 (7) 0.5839 (3) 0.5370 (6) 0.0272 (16)
H9 0.294351 0.559717 0.475132 0.033*
C1 0.6639 (7) 0.6662 (3) 0.4223 (6) 0.0211 (15)
H1 0.660792 0.675538 0.349272 0.025*
C2 0.7627 (6) 0.6294 (3) 0.4899 (6) 0.0183 (14)
C11 0.2853 (7) 0.5207 (3) 0.6534 (6) 0.0255 (16)
H11 0.240991 0.499080 0.586178 0.031*
C10 0.3508 (7) 0.5683 (3) 0.6477 (6) 0.0218 (15)
C16 0.4904 (7) 0.6026 (3) 1.0538 (6) 0.0238 (16)
H16A 0.542757 0.629416 1.111908 0.036*
H16B 0.530618 0.566523 1.074545 0.036*
H16C 0.404221 0.601242 1.050900 0.036*
C12 0.2858 (7) 0.5058 (3) 0.7564 (7) 0.0280 (17)
H12 0.242187 0.473566 0.760530 0.034*
C32 0.1628 (7) 0.8160 (3) 0.1762 (6) 0.0316 (18)
H32A 0.190174 0.803721 0.117616 0.047*
H32B 0.163046 0.856006 0.178571 0.047*
H32C 0.075922 0.802486 0.156396 0.047*
C13 0.3503 (7) 0.5377 (3) 0.8560 (6) 0.0227 (15)
H13 0.348877 0.527208 0.926644 0.027*
C27 0.1937 (7) 0.8398 (3) 0.5735 (7) 0.0319 (18)
H27 0.184498 0.850406 0.640731 0.038*
C8 0.9725 (8) 0.5111 (3) 0.8178 (7) 0.039 (2)
H8A 0.960792 0.480832 0.764274 0.059*
H8B 0.960716 0.497837 0.884633 0.059*
H8C 1.059277 0.526134 0.844102 0.059*
C24 0.7805 (7) 0.8960 (3) 0.4863 (7) 0.0286 (17)
H24A 0.857600 0.888943 0.474678 0.043*
H24B 0.796381 0.926870 0.539359 0.043*
H24C 0.708379 0.904619 0.411926 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sm1 0.01358 (16) 0.01627 (16) 0.01311 (16) 0.00116 (16) 0.00628 (12) 0.00091 (16)
Na2 0.0222 (14) 0.0203 (14) 0.0167 (13) −0.0018 (10) 0.0090 (11) −0.0019 (10)
O11 0.012 (2) 0.019 (2) 0.018 (2) 0.0034 (18) 0.0026 (19) 0.0009 (19)
O9 0.021 (3) 0.025 (3) 0.021 (3) −0.002 (2) 0.009 (2) 0.008 (2)
O6 0.023 (3) 0.021 (2) 0.015 (2) −0.003 (2) 0.009 (2) 0.0001 (19)
O3 0.026 (3) 0.026 (3) 0.025 (3) 0.009 (2) 0.008 (2) 0.010 (2)
O8 0.015 (2) 0.031 (3) 0.014 (2) −0.006 (2) 0.001 (2) 0.002 (2)
O12 0.021 (3) 0.030 (3) 0.020 (3) 0.006 (2) 0.005 (2) 0.005 (2)
O5 0.021 (3) 0.021 (2) 0.022 (3) −0.001 (2) 0.011 (2) −0.004 (2)
O2 0.021 (3) 0.028 (3) 0.020 (3) 0.014 (2) 0.010 (2) 0.010 (2)
O10 0.025 (3) 0.018 (2) 0.018 (2) 0.000 (2) 0.010 (2) −0.0058 (19)
O7 0.027 (3) 0.024 (3) 0.021 (3) −0.007 (2) 0.009 (2) 0.003 (2)
O1 0.026 (3) 0.033 (3) 0.021 (2) 0.011 (2) 0.014 (2) 0.005 (2)
O4 0.029 (3) 0.029 (3) 0.018 (3) −0.010 (2) 0.011 (2) −0.004 (2)
C19 0.015 (4) 0.032 (4) 0.017 (4) 0.007 (3) 0.003 (3) −0.002 (3)
C4 0.016 (4) 0.027 (4) 0.028 (4) −0.002 (3) 0.009 (3) −0.004 (3)
C22 0.019 (4) 0.023 (3) 0.017 (3) 0.004 (3) 0.009 (3) 0.002 (3)
C15 0.005 (3) 0.015 (3) 0.022 (4) 0.003 (2) 0.004 (3) 0.003 (3)
C6 0.020 (4) 0.014 (3) 0.025 (4) 0.002 (3) 0.009 (3) 0.003 (3)
C21 0.016 (4) 0.021 (3) 0.029 (4) −0.004 (3) 0.012 (3) −0.006 (3)
C7 0.011 (3) 0.017 (3) 0.020 (3) 0.000 (3) 0.006 (3) −0.004 (3)
C23 0.013 (3) 0.020 (3) 0.027 (4) 0.005 (3) 0.014 (3) 0.000 (3)
C18 0.013 (3) 0.028 (4) 0.018 (3) 0.002 (3) 0.007 (3) −0.002 (3)
C30 0.012 (3) 0.021 (3) 0.022 (3) −0.001 (3) 0.004 (3) 0.005 (3)
C25 0.026 (4) 0.021 (3) 0.023 (4) −0.006 (3) 0.015 (3) −0.004 (3)
C31 0.008 (3) 0.018 (3) 0.031 (4) −0.002 (3) 0.010 (3) 0.000 (3)
C17 0.023 (4) 0.020 (3) 0.016 (3) 0.007 (3) 0.007 (3) 0.001 (3)
C20 0.019 (4) 0.034 (4) 0.023 (4) −0.007 (3) 0.005 (3) −0.010 (3)
C29 0.016 (4) 0.031 (4) 0.034 (4) 0.007 (3) 0.011 (3) 0.011 (3)
C3 0.021 (4) 0.019 (3) 0.029 (4) −0.004 (3) 0.014 (3) −0.005 (3)
C26 0.013 (3) 0.021 (3) 0.022 (3) 0.002 (3) 0.005 (3) 0.005 (3)
C14 0.014 (3) 0.018 (3) 0.025 (4) 0.002 (3) 0.009 (3) 0.005 (3)
C5 0.013 (3) 0.017 (3) 0.030 (4) 0.003 (3) 0.005 (3) −0.001 (3)
C28 0.021 (4) 0.037 (4) 0.050 (5) 0.008 (3) 0.024 (4) 0.010 (4)
C9 0.028 (4) 0.023 (4) 0.034 (4) −0.006 (3) 0.016 (4) −0.013 (3)
C1 0.029 (4) 0.015 (3) 0.021 (4) 0.002 (3) 0.013 (3) 0.004 (3)
C2 0.018 (3) 0.018 (3) 0.022 (4) 0.000 (3) 0.011 (3) −0.001 (3)
C11 0.022 (4) 0.019 (4) 0.029 (4) −0.004 (3) 0.005 (3) −0.005 (3)
C10 0.021 (4) 0.018 (3) 0.024 (4) 0.000 (3) 0.008 (3) −0.002 (3)
C16 0.039 (4) 0.022 (4) 0.013 (3) 0.002 (3) 0.015 (3) 0.009 (3)
C12 0.022 (4) 0.018 (4) 0.046 (5) −0.007 (3) 0.016 (4) −0.002 (3)
C32 0.026 (4) 0.041 (5) 0.016 (4) 0.007 (3) −0.002 (3) 0.005 (3)
C13 0.026 (4) 0.018 (3) 0.029 (4) 0.000 (3) 0.017 (3) 0.004 (3)
C27 0.029 (4) 0.034 (4) 0.042 (5) 0.007 (3) 0.024 (4) 0.000 (4)
C8 0.036 (5) 0.041 (5) 0.037 (5) 0.016 (4) 0.013 (4) 0.011 (4)
C24 0.024 (4) 0.026 (4) 0.037 (4) 0.001 (3) 0.015 (4) 0.005 (3)

Geometric parameters (Å, º)

Sm1—Na2 3.742 (2) C6—C5 1.368 (9)
Sm1—Na2i 3.652 (2) C21—H21 0.9500
Sm1—O11 2.343 (4) C21—C20 1.404 (10)
Sm1—O8 2.346 (4) C7—C2 1.424 (9)
Sm1—O5 2.355 (4) C23—C18 1.417 (9)
Sm1—O2 2.323 (4) C18—C17 1.444 (9)
Sm1—O10 2.435 (4) C30—C31 1.427 (9)
Sm1—O7 2.446 (5) C30—C29 1.366 (9)
Sm1—O1 2.464 (4) C25—H25 0.9500
Sm1—O4 2.454 (5) C25—C26 1.442 (9)
Na2—O11ii 2.561 (5) C31—C26 1.419 (9)
Na2—O9ii 2.530 (5) C17—H17 0.9500
Na2—O6 2.386 (5) C20—H20 0.9500
Na2—O8ii 2.496 (5) C29—H29 0.9500
Na2—O5 2.468 (5) C29—C28 1.405 (10)
Na2—O10 2.463 (5) C3—H3 0.9500
Na2—O7 2.720 (5) C3—C2 1.424 (9)
Na2—O1ii 2.622 (5) C26—C27 1.412 (9)
O11—C31 1.288 (7) C14—C13 1.371 (9)
O9—C22 1.367 (8) C5—H5 0.9500
O9—C24 1.433 (8) C28—H28 0.9500
O6—C14 1.372 (8) C28—C27 1.361 (11)
O6—C16 1.430 (7) C9—H9 0.9500
O3—C6 1.373 (8) C9—C10 1.429 (10)
O3—C8 1.436 (8) C1—H1 0.9500
O8—C23 1.286 (8) C1—C2 1.418 (9)
O12—C30 1.365 (8) C11—H11 0.9500
O12—C32 1.437 (8) C11—C10 1.409 (9)
O5—C15 1.300 (7) C11—C12 1.369 (10)
O2—C7 1.286 (7) C16—H16A 0.9800
O10—C25 1.251 (8) C16—H16B 0.9800
O7—C17 1.245 (8) C16—H16C 0.9800
O1—C1 1.239 (8) C12—H12 0.9500
O4—C9 1.243 (8) C12—C13 1.404 (10)
C19—H19 0.9500 C32—H32A 0.9800
C19—C18 1.415 (9) C32—H32B 0.9800
C19—C20 1.356 (10) C32—H32C 0.9800
C4—H4 0.9500 C13—H13 0.9500
C4—C3 1.360 (10) C27—H27 0.9500
C4—C5 1.411 (10) C8—H8A 0.9800
C22—C21 1.376 (9) C8—H8B 0.9800
C22—C23 1.434 (9) C8—H8C 0.9800
C15—C14 1.431 (9) C24—H24A 0.9800
C15—C10 1.418 (9) C24—H24B 0.9800
C6—C7 1.444 (9) C24—H24C 0.9800
Na2i—Sm1—Na2 132.39 (3) C17—O7—Na2 130.1 (4)
O11—Sm1—Na2 110.43 (11) Sm1—O1—Na2i 91.74 (16)
O11—Sm1—Na2i 44.20 (11) C1—O1—Sm1 133.1 (4)
O11—Sm1—O8 76.94 (16) C1—O1—Na2i 116.9 (4)
O11—Sm1—O5 117.89 (15) C9—O4—Sm1 133.9 (5)
O11—Sm1—O10 70.90 (15) C18—C19—H19 119.7
O11—Sm1—O7 131.50 (15) C20—C19—H19 119.7
O11—Sm1—O1 73.70 (15) C20—C19—C18 120.6 (7)
O11—Sm1—O4 81.87 (16) C3—C4—H4 120.1
O8—Sm1—Na2i 42.62 (12) C3—C4—C5 119.8 (6)
O8—Sm1—Na2 102.02 (12) C5—C4—H4 120.1
O8—Sm1—O5 141.38 (16) O9—C22—C21 125.5 (6)
O8—Sm1—O10 85.20 (15) O9—C22—C23 112.5 (6)
O8—Sm1—O7 70.62 (15) C21—C22—C23 122.0 (6)
O8—Sm1—O1 71.81 (16) O5—C15—C14 119.3 (6)
O8—Sm1—O4 147.48 (15) O5—C15—C10 124.2 (6)
O5—Sm1—Na2i 161.47 (12) C10—C15—C14 116.5 (6)
O5—Sm1—Na2 40.22 (11) O3—C6—C7 113.5 (5)
O5—Sm1—O10 69.04 (15) C5—C6—O3 124.8 (6)
O5—Sm1—O7 74.01 (15) C5—C6—C7 121.6 (6)
O5—Sm1—O1 144.62 (16) C22—C21—H21 120.0
O5—Sm1—O4 70.78 (15) C22—C21—C20 120.0 (6)
O2—Sm1—Na2i 109.28 (11) C20—C21—H21 120.0
O2—Sm1—Na2 105.73 (11) O2—C7—C6 120.3 (6)
O2—Sm1—O11 143.78 (15) O2—C7—C2 124.0 (6)
O2—Sm1—O8 97.74 (16) C2—C7—C6 115.7 (5)
O2—Sm1—O5 88.81 (15) O8—C23—C22 119.4 (6)
O2—Sm1—O10 145.08 (16) O8—C23—C18 124.9 (6)
O2—Sm1—O7 76.86 (16) C18—C23—C22 115.7 (6)
O2—Sm1—O1 70.67 (15) C19—C18—C23 121.2 (6)
O2—Sm1—O4 85.02 (17) C19—C18—C17 117.6 (6)
O10—Sm1—Na2i 96.41 (11) C23—C18—C17 121.0 (6)
O10—Sm1—Na2 40.45 (11) O12—C30—C31 113.4 (6)
O10—Sm1—O7 71.35 (16) O12—C30—C29 124.3 (6)
O10—Sm1—O1 141.24 (15) C29—C30—C31 122.3 (6)
O10—Sm1—O4 110.82 (16) O10—C25—H25 117.1
O7—Sm1—Na2 46.55 (12) O10—C25—C26 125.8 (6)
O7—Sm1—Na2i 113.18 (11) C26—C25—H25 117.1
O7—Sm1—O1 125.48 (16) O11—C31—C30 121.0 (6)
O7—Sm1—O4 140.51 (15) O11—C31—C26 124.1 (6)
O1—Sm1—Na2i 45.86 (12) C26—C31—C30 114.9 (6)
O1—Sm1—Na2 171.95 (12) O7—C17—C18 126.5 (6)
O4—Sm1—Na2 108.40 (11) O7—C17—H17 116.8
O4—Sm1—Na2i 105.84 (12) C18—C17—H17 116.8
O4—Sm1—O1 78.76 (16) C19—C20—C21 120.3 (7)
Sm1ii—Na2—Sm1 142.49 (7) C19—C20—H20 119.9
O11ii—Na2—Sm1 135.37 (13) C21—C20—H20 119.9
O11ii—Na2—Sm1ii 39.63 (10) C30—C29—H29 119.6
O11ii—Na2—O7 155.90 (17) C30—C29—C28 120.9 (7)
O11ii—Na2—O1ii 67.62 (14) C28—C29—H29 119.6
O9ii—Na2—Sm1 99.88 (12) C4—C3—H3 119.8
O9ii—Na2—Sm1ii 101.57 (13) C4—C3—C2 120.3 (7)
O9ii—Na2—O11ii 124.54 (17) C2—C3—H3 119.8
O9ii—Na2—O7 69.09 (15) C31—C26—C25 122.1 (6)
O9ii—Na2—O1ii 113.80 (18) C27—C26—C25 115.0 (6)
O6—Na2—Sm1 102.78 (13) C27—C26—C31 122.6 (6)
O6—Na2—Sm1ii 112.76 (13) O6—C14—C15 113.2 (5)
O6—Na2—O11ii 87.83 (16) C13—C14—O6 125.5 (6)
O6—Na2—O9ii 72.92 (17) C13—C14—C15 121.3 (6)
O6—Na2—O8ii 98.17 (17) C4—C5—H5 119.4
O6—Na2—O5 65.02 (16) C6—C5—C4 121.1 (6)
O6—Na2—O10 124.32 (18) C6—C5—H5 119.4
O6—Na2—O7 116.13 (17) C29—C28—H28 120.1
O6—Na2—O1ii 154.16 (17) C27—C28—C29 119.8 (7)
O8ii—Na2—Sm1 146.68 (14) C27—C28—H28 120.1
O8ii—Na2—Sm1ii 39.52 (11) O4—C9—H9 115.7
O8ii—Na2—O11ii 70.44 (15) O4—C9—C10 128.7 (7)
O8ii—Na2—O9ii 62.06 (15) C10—C9—H9 115.7
O8ii—Na2—O7 106.41 (17) O1—C1—H1 115.6
O8ii—Na2—O1ii 66.87 (16) O1—C1—C2 128.8 (6)
O5—Na2—Sm1ii 164.45 (14) C2—C1—H1 115.6
O5—Na2—Sm1 38.03 (11) C7—C2—C3 121.4 (6)
O5—Na2—O11ii 125.80 (18) C1—C2—C7 120.8 (6)
O5—Na2—O9ii 92.53 (17) C1—C2—C3 117.7 (6)
O5—Na2—O8ii 153.53 (19) C10—C11—H11 120.2
O5—Na2—O7 67.52 (15) C12—C11—H11 120.2
O5—Na2—O1ii 136.04 (17) C12—C11—C10 119.6 (7)
O10—Na2—Sm1 39.91 (10) C15—C10—C9 121.0 (6)
O10—Na2—Sm1ii 106.15 (12) C11—C10—C15 121.5 (6)
O10—Na2—O11ii 98.71 (16) C11—C10—C9 117.5 (6)
O10—Na2—O9ii 135.31 (18) O6—C16—H16A 109.5
O10—Na2—O8ii 136.24 (18) O6—C16—H16B 109.5
O10—Na2—O5 66.83 (15) O6—C16—H16C 109.5
O10—Na2—O7 66.42 (16) H16A—C16—H16B 109.5
O10—Na2—O1ii 69.82 (15) H16A—C16—H16C 109.5
O7—Na2—Sm1ii 123.68 (13) H16B—C16—H16C 109.5
O7—Na2—Sm1 40.76 (11) C11—C12—H12 119.7
O1ii—Na2—Sm1 100.53 (11) C11—C12—C13 120.6 (6)
O1ii—Na2—Sm1ii 42.40 (10) C13—C12—H12 119.7
O1ii—Na2—O7 88.94 (15) O12—C32—H32A 109.5
Sm1—O11—Na2i 96.18 (16) O12—C32—H32B 109.5
C31—O11—Sm1 139.3 (4) O12—C32—H32C 109.5
C31—O11—Na2i 112.8 (4) H32A—C32—H32B 109.5
C22—O9—Na2i 121.2 (4) H32A—C32—H32C 109.5
C22—O9—C24 118.7 (5) H32B—C32—H32C 109.5
C24—O9—Na2i 119.6 (4) C14—C13—C12 120.4 (6)
C14—O6—Na2 121.3 (4) C14—C13—H13 119.8
C14—O6—C16 117.4 (5) C12—C13—H13 119.8
C16—O6—Na2 120.7 (4) C26—C27—H27 120.2
C6—O3—C8 115.9 (5) C28—C27—C26 119.6 (7)
Sm1—O8—Na2i 97.86 (17) C28—C27—H27 120.2
C23—O8—Sm1 137.3 (4) O3—C8—H8A 109.5
C23—O8—Na2i 122.0 (4) O3—C8—H8B 109.5
C30—O12—C32 115.9 (5) O3—C8—H8C 109.5
Sm1—O5—Na2 101.75 (17) H8A—C8—H8B 109.5
C15—O5—Sm1 139.7 (4) H8A—C8—H8C 109.5
C15—O5—Na2 117.6 (4) H8B—C8—H8C 109.5
C7—O2—Sm1 139.6 (4) O9—C24—H24A 109.5
Sm1—O10—Na2 99.63 (17) O9—C24—H24B 109.5
C25—O10—Sm1 135.6 (4) O9—C24—H24C 109.5
C25—O10—Na2 119.4 (4) H24A—C24—H24B 109.5
Sm1—O7—Na2 92.68 (16) H24A—C24—H24C 109.5
C17—O7—Sm1 132.7 (4) H24B—C24—H24C 109.5
Sm1—O11—C31—C30 −171.4 (4) O4—C9—C10—C15 −1.8 (12)
Sm1—O11—C31—C26 9.0 (10) O4—C9—C10—C11 177.4 (7)
Sm1—O8—C23—C22 169.3 (4) C19—C18—C17—O7 177.7 (6)
Sm1—O8—C23—C18 −13.0 (10) C4—C3—C2—C7 0.4 (10)
Sm1—O5—C15—C14 177.5 (4) C4—C3—C2—C1 −179.3 (6)
Sm1—O5—C15—C10 −4.2 (10) C22—C21—C20—C19 −1.8 (10)
Sm1—O2—C7—C6 163.9 (5) C22—C23—C18—C19 −5.4 (9)
Sm1—O2—C7—C2 −15.2 (11) C22—C23—C18—C17 169.0 (6)
Sm1—O10—C25—C26 −10.9 (10) C15—C14—C13—C12 −1.3 (10)
Sm1—O7—C17—C18 22.4 (10) C6—C7—C2—C3 −1.5 (9)
Sm1—O1—C1—C2 9.8 (11) C6—C7—C2—C1 178.2 (6)
Sm1—O4—C9—C10 14.5 (11) C21—C22—C23—O8 −177.2 (6)
Na2i—O11—C31—C30 56.8 (7) C21—C22—C23—C18 5.0 (9)
Na2i—O11—C31—C26 −122.8 (6) C7—C6—C5—C4 −0.9 (10)
Na2i—O9—C22—C21 163.7 (5) C23—C22—C21—C20 −1.5 (10)
Na2i—O9—C22—C23 −14.4 (7) C23—C18—C17—O7 3.1 (10)
Na2—O6—C14—C15 14.1 (7) C18—C19—C20—C21 1.3 (10)
Na2—O6—C14—C13 −166.7 (5) C30—C31—C26—C25 −174.4 (6)
Na2i—O8—C23—C22 13.1 (8) C30—C31—C26—C27 −1.1 (10)
Na2i—O8—C23—C18 −169.2 (5) C30—C29—C28—C27 1.3 (11)
Na2—O5—C15—C14 −15.7 (7) C25—C26—C27—C28 175.8 (7)
Na2—O5—C15—C10 162.7 (5) C31—C30—C29—C28 −0.4 (11)
Na2—O10—C25—C26 −158.9 (5) C31—C26—C27—C28 2.1 (11)
Na2—O7—C17—C18 −126.9 (6) C20—C19—C18—C23 2.5 (10)
Na2i—O1—C1—C2 131.2 (6) C20—C19—C18—C17 −172.1 (6)
O11—C31—C26—C25 5.3 (10) C29—C30—C31—O11 −179.4 (6)
O11—C31—C26—C27 178.6 (6) C29—C30—C31—C26 0.3 (9)
O9—C22—C21—C20 −179.4 (6) C29—C28—C27—C26 −2.1 (11)
O9—C22—C23—O8 1.1 (8) C3—C4—C5—C6 −0.3 (10)
O9—C22—C23—C18 −176.8 (5) C14—C15—C10—C9 174.6 (6)
O6—C14—C13—C12 179.6 (6) C14—C15—C10—C11 −4.5 (9)
O3—C6—C7—O2 0.9 (9) C5—C4—C3—C2 0.5 (10)
O3—C6—C7—C2 −179.9 (6) C5—C6—C7—O2 −177.5 (6)
O3—C6—C5—C4 −179.1 (6) C5—C6—C7—C2 1.7 (9)
O8—C23—C18—C19 176.8 (6) C11—C12—C13—C14 −1.0 (11)
O8—C23—C18—C17 −8.8 (10) C10—C15—C14—O6 −176.8 (5)
O12—C30—C31—O11 −1.3 (9) C10—C15—C14—C13 3.9 (9)
O12—C30—C31—C26 178.4 (5) C10—C11—C12—C13 0.4 (11)
O12—C30—C29—C28 −178.3 (6) C16—O6—C14—C15 −174.3 (5)
O5—C15—C14—O6 1.7 (8) C16—O6—C14—C13 4.9 (9)
O5—C15—C14—C13 −177.5 (6) C12—C11—C10—C15 2.5 (10)
O5—C15—C10—C9 −3.9 (10) C12—C11—C10—C9 −176.7 (7)
O5—C15—C10—C11 177.0 (6) C32—O12—C30—C31 176.9 (6)
O2—C7—C2—C3 177.7 (6) C32—O12—C30—C29 −5.1 (10)
O2—C7—C2—C1 −2.6 (10) C8—O3—C6—C7 174.9 (6)
O10—C25—C26—C31 −3.8 (11) C8—O3—C6—C5 −6.8 (10)
O10—C25—C26—C27 −177.6 (7) C24—O9—C22—C21 −7.8 (9)
O1—C1—C2—C7 4.1 (11) C24—O9—C22—C23 174.1 (5)
O1—C1—C2—C3 −176.2 (7)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Funding Statement

The primary funding mechanism for this study was the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the Department of Energy. AW and AA are grateful for support from the Linus Pauling Distinguished Postdoctoral Fellowship. RGS was supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry program, FWP 73200. AMH was supported by the Department of Energy, National Nuclear Security Administration under award No. DE-NA0003763, the Arthur J. Schmitt Leadership Fellowship at the University of Notre Dame, and the postdoctoral program at Lawrence Livermore National Laboratory.

References

  1. Albrecht, M. (2001). Chem. Rev. 101, 3457–3498. [DOI] [PubMed]
  2. Andruh, M. (2015). Dalton Trans. 44, 16633–16653. [DOI] [PubMed]
  3. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  4. Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bünzli, J. G. & Piguet, C. (2002). Chem. Rev. 102, 1897–1928. [DOI] [PubMed]
  6. Chaudhari, A. K., Joarder, B., Rivière, E., Rogez, G. & Ghosh, S. K. (2012). Inorg. Chem. 51, 9159–9161. [DOI] [PubMed]
  7. Cheng, J.-W. & Yang, G.-Y. (2017). Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, edited by Z. Zheng, pp. 97–119. Berlin, Heidelberg: Springer Berlin Heidelberg.
  8. Costes, J., Dahan, F., Duhayon, C. & Mota, A. J. (2015). Polyhedron, 96, 51–56.
  9. Costes, J., Dahan, F., Vendier, L., Shova, S., Lorusso, G. & Evangelisti, M. (2018). Dalton Trans. 47, 1106–1116. [DOI] [PubMed]
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Griffiths, K., Kumar, P., Mattock, J. D., Abdul-Sada, A., Pitak, M. B., Coles, S. J., Navarro, O., Vargas, A. & Kostakis, G. E. (2016). Inorg. Chem. 55, 6988–6994. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J. & Kanaras, A. G. (2019). Chem. Rev. 119, 97–119. [DOI] [PubMed]
  14. Kırpık, H., Kose, M., Elsegood, M. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882–888.
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Li, X., Zhao, L., Wu, J., Shi, W., Struch, N., Lutzen, A., Powell, A. K., Cheng, P. & Tang, J. (2022). Chem. Sci. 13, 10048–10056. [DOI] [PMC free article] [PubMed]
  17. Ma, J., Ma, T., Qian, R., Zhou, L., Guo, Q., Yang, J. & Yang, Q. (2021). Inorg. Chem. 60, 7937–7951. [DOI] [PubMed]
  18. Novitchi, G., Pilet, G., Ungur, L., Moshchalkov, V. V., Wernsdorfer, W., Chibotaru, L. F., Luneau, D. & Powell, A. K. (2012). Chem. Sci. 3, 1169–1176.
  19. Peng, G., Ma, L., Cai, J., Liang, L., Deng, H. & Kostakis, G. E. (2011). Cryst. Growth Des. 11, 2485–2492.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Song, X., Liu, P., Wang, C., Liu, Y., Liu, W. & Zhang, M. (2017). RSC Adv. 7, 22692–22698.
  23. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  24. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  25. Yee, T. A., Suescun, L. & Rabuffetti, F. A. (2019). J. Solid State Chem. 270, 242–246.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001051/oo2002sup1.cif

e-80-00267-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001051/oo2002Isup2.hkl

e-80-00267-Isup2.hkl (493.3KB, hkl)
e-80-00267-Isup4.mol (4.3KB, mol)

Supporting information file. DOI: 10.1107/S2056989024001051/oo2002Isup4.mol

e-80-00267-sup3.docx (1.9MB, docx)

Word document (Characterization details, experimental diffractogram of Sm-1, and FTIR spectrum and diffuse reflectance spectrum of Sm-1 are provided.). DOI: 10.1107/S2056989024001051/oo2002sup3.docx

CCDC reference: 2329845

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES