Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 20;80(Pt 3):310–313. doi: 10.1107/S2056989024001440

Synthesis, characterization, and crystal structure of 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide

Pawan Dhote a, Srinu Tothadi b,*, Chepuri V Ramana a,*
Editor: D Choprac
PMCID: PMC10915669  PMID: 38456061

An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen.

Keywords: crystal structure, isatogen, reactivity, hydrogen bonding

Abstract

An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen, C14H8N4O2. In the crystal structure, weak C—H⋯O hydrogen bonds and π–π stacking inter­actions link the mol­ecules. The structure exhibits disorder of the mol­ecule.

1. Chemical context

2,2-Disubstituted indolin-3-ones play a crucial role as fundamental structural motifs in various natural alkaloids and bioactive mol­ecules (Dhote, Patel et al., 2021; Ji et al., 2019; Gu et al., 2014). Thus, substantial research efforts have been dedicated to the synthesis of these essential compounds (Dhote, Patel et al., 2021; Wang et al., 2021; Liu & McWhorter, 2003; Wetzel & Gagosz, 2011; Liu et al., 2003). These synthetic methods can be broadly sorted into three main strategies, viz. oxidative dearomatization of indoles (Wang et al., 2021; Liu et al., 2020), cyclization reactions (Dhote, Pund & Ramana, 2021; Xie et al., 2021; Fu & Song, 2018) and nucleophilic additions to 3H-indol-3-ones or indolone-N-oxides (Zhang et al., 2017; Liu et al., 2003; Berti et al., 1975). Notably, indolone-N-oxides, also known as isatogens, hold substantial importance in medicinal chemistry and serve as inter­mediates in the synthesis of natural alkaloids and bioactive compounds (Nepveu et al., 2010). The literature contains a wide array of techniques for synthesizing isatogens, encompassing both metal-free and metal-catalyzed routes (Dhote & Ramana, 2021; Dhote, Halnor et al., 2021). These methods have been rigorously explored and well documented, underscoring the adaptability and importance of isatogens in the realms of organic synthesis and medicinal chemistry. Over the past few years, our research group has been deeply involved in this field, particularly focusing on their synthesis through nitro­alkyne cyclo­isomerization (Dhote, Pund & Ramana, 2021; Dhote & Ramana, 2019; Kumar & Ramana, 2014, 2015; Patel et al., 2010) and we have demonstrated their utility in total synthesis endeavors (Patel et al., 2014; Reddy & Ramana, 2013; Kumar et al., 2012; Patel & Ramana, 2012).

As part of our efforts to demonstrate the reactivity of the nitro group compared to the azide group (Dhote & Ramana, 2022; Dhote, Halner et al., 2021), we designed a substrate that incorporates both a nitro group and an azide group positioned ortho to an alkyne functionality. Inter­estingly, when we subjected this substrate to treatment with either AuIII or AuI, we obtained isatogen 2 with the azide moiety intact in relatively good yield (see reaction scheme below). The structural characterization of 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide, 2, was achieved through spectral and analytical data analysis. In the 1H NMR spectra of 2, the protons were observed to be overlapping, posing challenges in confirming the precise structure. Subsequently, the 13C NMR spectrum indicated the absence of the alkyne carbon signal, suggesting a modification at the alkyne functionality (see Figs. S1 and S2 in the supporting information). Additionally, signals corresponding to the carbonyl and the newly formed quaternary center were observed at δ = 185.2 and 140.2 ppm, respectively. The mol­ecular composition of compound 2 was further verified as C14H9N4O2 through high-resolution mass spectrometry ([M + H]+ found as 265.0771). Moreover, the structure of 2 was conclusively confirmed through single-crystal X-ray diffraction analysis. 1.

2. Structural commentary and supra­molecular features

The title compound crystallizes in space group P-1 with one mol­ecule in the asymmetric unit (Fig. 1). Mol­ecules are further connected via C—H⋯O (Table 1) weak hydrogen bonds (Desiraju et al., 1999) along the b-axis direction (Fig. 2). Moreover, π–π stacking [3.354 (2) Å; Chipot et al., 1996; Chen et al., 2018) is observed along the a-axis direction (Fig. 3). However, there are no classical hydrogen bonds present in the crystal packing.

Figure 1.

Figure 1

ORTEP diagram of 2 with 50% probability displacement ellipsoids. Only one mol­ecule is present in the asymmetric unit.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.43 3.1077 (16) 128
C11—H11⋯O1ii 0.95 2.57 3.2327 (17) 127

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

The packing of mol­ecules via C—H⋯O hydrogen bonds along the b-axis direction. The blue lines depict the inter­molecular inter­actions.

Figure 3.

Figure 3

The single-crystal structure of 2. π–π stacking [centroid–centroid distance = 3.354 (2) Å] can be seen along the a-axis direction.

In general, C=O bond lengths (1.22 Å) are always shorter than N+—O (1.26 Å). However, in the current scenario, the C=O and N+—O bond lengths are almost equal (Table 2). We therefore analyzed the bond lengths in similar structures found in the Cambridge Structural Database (Conquest 2023.3.0; CSD version 5.45, update of November 2023; Groom et al., 2016), among which seven show N/C disorder and two have similar bond lengths to those in the title compound. We analyzed the bond lengths of similar mol­ecules in the CSD database and further modeled the disorder in the current mol­ecule. After modeling the disorder, the R factor reduced to 4.22%. Predominantly, if the atoms of mol­ecules are disordered, the bond distance are averaged out and shows the mean distance of bonds. The N (N1A and N17A) and C (C1B and C17) atoms of isatogen are disordered over two positions with equal (0.5) site occupancy. As the mol­ecule exhibits disorder, the bond distances were averaged out, giving N17A—O1/C17=O1 = 1.252 (1) Å and C1B=O2/N1A—O2 = 1.248 (1) Å.

Table 2. Covalent C=O/N+—O bond lengths (Å) in 2 and related structures.

Compound C=O/N+—O N+—O/C=O
SAWYAR 1.240 (4) 1.241 (4)
SAZQIU 1.253 (2) 1.243 (4)
2 1.252 (1) 1.248 (1)

3. Hirshfeld surface analysis

A Hirshfeld surface analysis of compound 2 was undertaken with CrystalExplorer 21.5 (Spackman et al., 2021) to investigate the inter­molecular inter­actions. The overall 2D fingerprint plot is shown in Fig. 4 a and those delineated into H⋯H (19.4%), H⋯C/C⋯H (14.9%), H⋯N/N⋯H (22.1%), and H⋯O/O⋯H (23.1%) inter­actions are shown in Fig. 4 be. Inter­actions such as N⋯O/O⋯N O⋯C/C⋯O and N⋯C/ C⋯N contribute very little to the overall surface and hence those contacts are not shown. The Hirshfeld surface mapped with d norm is shown in Fig. 4 f (d norm is the normalized sum of d e and d i where de is the distance from the Hirshfeld surface to the nearest atom i inter­nal to the surface and d i is distance from Hirshfeld surface to the nearest atom e external to the surface).

Figure 4.

Figure 4

The two-dimensional fingerprint plots for 2, showing inter­actions: (a) all inter­actions and delineated into (b) H⋯H contacts; (c) H⋯C/C⋯H contacts; (d) H⋯N/N⋯H contacts and (e) H⋯O/O⋯H contacts; (f) Hirshfeld surface mapped with d norm.

4. Database survey

There are twenty structures of isatogen present in the Cambridge Structural Database (CSD; Conquest 2023.3.0; CSD version 5.45, update of November 2023; Groom et al., 2016), among which ten show N/C disorder. Bond lengths associated with these atoms are unusual. In most crystal structures, C=O is always less than N+—O. In contrast, the C=O and N+—O bond lengths in SAWYAR (Clegg, 2005) and SAZQIU (Clegg & Elsegood, 2005) are almost equal and are similar to those the title compound (Table 2).

5. Synthesis and crystallization

The reaction was carried out at room temperature and under an argon atmosphere. To a solution of the active gold complex prepared from JohnPhosAuCl (5 mol%) and AgSbF6 (10 mol%) or AuCl3 (5 mol%) in 1,2-DCE (1 ml) was added a solution of 1-azido-2-[(2 nitro­phen­yl)ethyn­yl]benzene, 1, in 1,2-DCE (0.5 ml) dropwise over 5 minutes. The resulting solution was stirred for a period of 2 h and then concentrated under reduced pressure. The resulting crude product was purified by column chromatography to afford 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide, 2, as a yellow solid. Next, single crystals were grown by slow evaporation of a solution of compounds (10 mg) in aceto­nitrile (1 ml) [placed in a long glass vial of 2 ml volume and closed with a cotton plug] at room temperature in a dark place.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C14H8N4O2
M r 264.24
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.166 (2), 7.686 (3), 12.172 (4)
α, β, γ (°) 95.473 (16), 105.226 (12), 113.116 (13)
V3) 579.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.12 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.626, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 45548, 4818, 3946
R int 0.049
(sin θ/λ)max−1) 0.811
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.122, 1.05
No. of reflections 4818
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.29

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001440/dx2056sup1.cif

e-80-00310-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001440/dx2056Isup2.hkl

e-80-00310-Isup2.hkl (383.5KB, hkl)
e-80-00310-sup4.docx (4.7MB, docx)

Supporting information. DOI: 10.1107/S2056989024001440/dx2056sup4.docx

e-80-00310-Isup4.cml (4.7KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001440/dx2056Isup4.cml

CCDC reference: 2303503

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CVR acknowledges SERB (CRG/2021/005729), New Delhi, India for funding this project. PD thanks DST-Inspire for the fellowship. ST thanks SERB for the Start-up Research Grant (SRG/2023/000209) and AESD&CIF (MLP0072), CSIR-CSMCRI for the infrastructure.

supplementary crystallographic information

Crystal data

C14H8N4O2 Z = 2
Mr = 264.24 F(000) = 272
Triclinic, P1 Dx = 1.513 Mg m3
a = 7.166 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.686 (3) Å Cell parameters from 9975 reflections
c = 12.172 (4) Å θ = 3.1–34.6°
α = 95.473 (16)° µ = 0.11 mm1
β = 105.226 (12)° T = 100 K
γ = 113.116 (13)° Block, colourless
V = 579.9 (3) Å3 0.12 × 0.06 × 0.05 mm

Data collection

Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer 3946 reflections with I > 2σ(I)
φ and ω scans Rint = 0.049
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 35.2°, θmin = 3.0°
Tmin = 0.626, Tmax = 0.745 h = −11→11
45548 measured reflections k = −12→12
4818 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.066P)2 + 0.1514P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4818 reflections Δρmax = 0.46 e Å3
181 parameters Δρmin = −0.29 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.67828 (11) −0.03978 (9) 0.35537 (6) 0.01840 (14)
O2 0.33615 (11) 0.29764 (9) 0.15423 (6) 0.01970 (14)
N4 1.05131 (16) 0.87935 (13) 0.27516 (9) 0.02787 (19)
N2 0.81071 (12) 0.56952 (10) 0.28504 (6) 0.01489 (14)
N3 0.93852 (12) 0.73575 (11) 0.28689 (7) 0.01669 (14)
C10 0.77636 (12) 0.53396 (11) 0.39246 (7) 0.01172 (14)
C9 0.64747 (12) 0.34085 (11) 0.39218 (7) 0.01194 (14)
C8 0.54989 (12) 0.18621 (11) 0.28650 (7) 0.01240 (14)
N1A 0.40687 (13) 0.17681 (11) 0.17988 (8) 0.01765 (16) 0.5
C14 0.34033 (13) −0.00926 (12) 0.09961 (7) 0.01469 (15)
C2 0.20365 (14) −0.08622 (14) −0.01379 (8) 0.01915 (17)
H2 0.134768 −0.017372 −0.055149 0.023*
C3 0.17122 (15) −0.27158 (15) −0.06522 (8) 0.02109 (18)
H3 0.077902 −0.330058 −0.143374 0.025*
C11 0.86772 (13) 0.67870 (12) 0.49428 (7) 0.01393 (15)
H11 0.955317 0.808707 0.493893 0.017*
C12 0.83019 (14) 0.63213 (13) 0.59624 (7) 0.01570 (15)
H12 0.891796 0.730900 0.665580 0.019*
C13 0.70271 (14) 0.44142 (13) 0.59774 (7) 0.01594 (15)
H13 0.677285 0.410403 0.667753 0.019*
C15 0.61299 (13) 0.29688 (12) 0.49620 (7) 0.01451 (15)
H15 0.527337 0.166823 0.497471 0.017*
C17 0.57040 (12) 0.01171 (11) 0.27811 (7) 0.01585 (15) 0.5
C6 0.44015 (13) −0.11001 (12) 0.16023 (7) 0.01356 (14)
C5 0.41071 (14) −0.29159 (12) 0.11154 (8) 0.01623 (15)
H5 0.479954 −0.359268 0.153933 0.019*
C4 0.27263 (15) −0.37139 (13) −0.00430 (8) 0.01966 (17)
H4 0.247984 −0.496292 −0.041850 0.024*
C1B 0.40687 (13) 0.17681 (11) 0.17988 (8) 0.01765 (16) 0.5
N17A 0.57040 (12) 0.01171 (11) 0.27811 (7) 0.01585 (15) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0195 (3) 0.0149 (3) 0.0197 (3) 0.0079 (2) 0.0042 (2) 0.0036 (2)
O2 0.0234 (3) 0.0138 (3) 0.0220 (3) 0.0095 (2) 0.0055 (2) 0.0039 (2)
N4 0.0328 (5) 0.0178 (4) 0.0343 (5) 0.0059 (3) 0.0205 (4) 0.0074 (3)
N2 0.0166 (3) 0.0121 (3) 0.0142 (3) 0.0040 (2) 0.0059 (2) 0.0031 (2)
N3 0.0184 (3) 0.0153 (3) 0.0178 (3) 0.0072 (3) 0.0084 (3) 0.0037 (2)
C10 0.0113 (3) 0.0120 (3) 0.0122 (3) 0.0057 (2) 0.0036 (2) 0.0023 (2)
C9 0.0112 (3) 0.0116 (3) 0.0128 (3) 0.0053 (3) 0.0033 (2) 0.0023 (2)
C8 0.0124 (3) 0.0099 (3) 0.0145 (3) 0.0043 (2) 0.0048 (3) 0.0024 (2)
N1A 0.0196 (4) 0.0103 (3) 0.0231 (4) 0.0038 (3) 0.0121 (3) 0.0015 (3)
C14 0.0162 (3) 0.0110 (3) 0.0183 (4) 0.0053 (3) 0.0088 (3) 0.0031 (3)
C2 0.0170 (4) 0.0261 (4) 0.0194 (4) 0.0118 (3) 0.0078 (3) 0.0116 (3)
C3 0.0172 (4) 0.0269 (4) 0.0129 (3) 0.0052 (3) 0.0033 (3) 0.0012 (3)
C11 0.0134 (3) 0.0120 (3) 0.0145 (3) 0.0053 (3) 0.0028 (3) 0.0004 (3)
C12 0.0165 (3) 0.0178 (4) 0.0130 (3) 0.0096 (3) 0.0028 (3) 0.0008 (3)
C13 0.0175 (4) 0.0202 (4) 0.0130 (3) 0.0104 (3) 0.0056 (3) 0.0044 (3)
C15 0.0148 (3) 0.0152 (3) 0.0153 (3) 0.0074 (3) 0.0057 (3) 0.0050 (3)
C17 0.0135 (3) 0.0138 (3) 0.0155 (3) 0.0015 (3) 0.0058 (3) −0.0005 (2)
C6 0.0134 (3) 0.0117 (3) 0.0128 (3) 0.0029 (3) 0.0046 (3) 0.0010 (2)
C5 0.0187 (4) 0.0132 (3) 0.0191 (4) 0.0078 (3) 0.0077 (3) 0.0056 (3)
C4 0.0223 (4) 0.0133 (3) 0.0198 (4) 0.0041 (3) 0.0087 (3) −0.0014 (3)
C1B 0.0196 (4) 0.0103 (3) 0.0231 (4) 0.0038 (3) 0.0121 (3) 0.0015 (3)
N17A 0.0135 (3) 0.0138 (3) 0.0155 (3) 0.0015 (3) 0.0058 (3) −0.0005 (2)

Geometric parameters (Å, º)

O1—C17 1.2523 (11) C14—C1B 1.4767 (12)
O1—N17A 1.2523 (11) C2—H2 0.9500
O2—N1A 1.2485 (11) C2—C3 1.4033 (15)
O2—C1B 1.2485 (11) C3—H3 0.9500
N4—N3 1.1323 (12) C3—C4 1.3892 (14)
N2—N3 1.2396 (11) C11—H11 0.9500
N2—C10 1.4245 (11) C11—C12 1.3876 (12)
C10—C9 1.4061 (12) C12—H12 0.9500
C10—C11 1.3933 (12) C12—C13 1.3950 (13)
C9—C8 1.4628 (12) C13—H13 0.9500
C9—C15 1.3996 (12) C13—C15 1.3911 (12)
C8—N1A 1.4019 (13) C15—H15 0.9500
C8—C17 1.4028 (12) C17—C6 1.4697 (12)
C8—C1B 1.4019 (13) C6—C5 1.3744 (12)
C8—N17A 1.4028 (12) C6—N17A 1.4697 (12)
N1A—C14 1.4767 (12) C5—H5 0.9500
C14—C2 1.3762 (13) C5—C4 1.4033 (13)
C14—C6 1.3865 (12) C4—H4 0.9500
N3—N2—C10 116.77 (7) C12—C11—H11 120.1
N4—N3—N2 171.89 (9) C11—C12—H12 119.7
C9—C10—N2 116.31 (7) C11—C12—C13 120.52 (8)
C11—C10—N2 123.03 (8) C13—C12—H12 119.7
C11—C10—C9 120.64 (8) C12—C13—H13 120.2
C10—C9—C8 121.71 (7) C15—C13—C12 119.67 (8)
C15—C9—C10 118.70 (7) C15—C13—H13 120.2
C15—C9—C8 119.59 (7) C9—C15—H15 119.6
N1A—C8—C9 126.97 (7) C13—C15—C9 120.76 (8)
N1A—C8—C17 107.79 (7) C13—C15—H15 119.6
C17—C8—C9 125.04 (7) O1—C17—C8 127.91 (8)
C1B—C8—C9 126.97 (7) O1—C17—C6 123.29 (8)
C1B—C8—N17A 107.79 (7) C8—C17—C6 108.80 (7)
N17A—C8—C9 125.04 (7) C14—C6—C17 107.50 (7)
O2—N1A—C8 127.81 (8) C14—C6—N17A 107.50 (7)
O2—N1A—C14 123.50 (8) C5—C6—C14 122.61 (8)
C8—N1A—C14 108.64 (7) C5—C6—C17 129.89 (8)
C2—C14—N1A 131.01 (8) C5—C6—N17A 129.89 (8)
C2—C14—C6 121.74 (8) C6—C5—H5 121.9
C2—C14—C1B 131.01 (8) C6—C5—C4 116.25 (8)
C6—C14—N1A 107.23 (8) C4—C5—H5 121.9
C6—C14—C1B 107.23 (8) C3—C4—C5 121.38 (8)
C14—C2—H2 121.7 C3—C4—H4 119.3
C14—C2—C3 116.59 (8) C5—C4—H4 119.3
C3—C2—H2 121.7 O2—C1B—C8 127.81 (8)
C2—C3—H3 119.3 O2—C1B—C14 123.50 (8)
C4—C3—C2 121.42 (8) C8—C1B—C14 108.64 (7)
C4—C3—H3 119.3 O1—N17A—C8 127.91 (8)
C10—C11—H11 120.1 O1—N17A—C6 123.29 (8)
C12—C11—C10 119.71 (8) C8—N17A—C6 108.80 (7)
O1—C17—C6—C14 178.78 (8) C14—C6—C5—C4 0.01 (12)
O1—C17—C6—C5 −0.58 (14) C14—C6—N17A—O1 178.78 (8)
O2—N1A—C14—C2 2.51 (14) C14—C6—N17A—C8 −0.88 (9)
O2—N1A—C14—C6 −176.07 (8) C2—C14—C6—C17 −179.07 (7)
N2—C10—C9—C8 −1.48 (11) C2—C14—C6—C5 0.35 (13)
N2—C10—C9—C15 178.39 (7) C2—C14—C6—N17A −179.07 (7)
N2—C10—C11—C12 −178.73 (7) C2—C14—C1B—O2 2.51 (14)
N3—N2—C10—C9 −174.08 (7) C2—C14—C1B—C8 −179.99 (9)
N3—N2—C10—C11 4.34 (12) C2—C3—C4—C5 0.43 (14)
C10—C9—C8—N1A −59.12 (12) C11—C10—C9—C8 −179.94 (7)
C10—C9—C8—C17 126.65 (9) C11—C10—C9—C15 −0.08 (11)
C10—C9—C8—C1B −59.12 (12) C11—C12—C13—C15 0.14 (13)
C10—C9—C8—N17A 126.65 (9) C12—C13—C15—C9 −0.61 (12)
C10—C9—C15—C13 0.57 (12) C15—C9—C8—N1A 121.02 (9)
C10—C11—C12—C13 0.35 (12) C15—C9—C8—C17 −53.22 (11)
C9—C10—C11—C12 −0.38 (12) C15—C9—C8—C1B 121.02 (9)
C9—C8—N1A—O2 0.35 (14) C15—C9—C8—N17A −53.22 (11)
C9—C8—N1A—C14 −177.02 (7) C17—C8—N1A—O2 175.39 (8)
C9—C8—C17—O1 −2.70 (13) C17—C8—N1A—C14 −1.97 (9)
C9—C8—C17—C6 176.94 (7) C17—C6—C5—C4 179.29 (8)
C9—C8—C1B—O2 0.35 (14) C6—C14—C2—C3 −0.31 (13)
C9—C8—C1B—C14 −177.02 (7) C6—C14—C1B—O2 −176.07 (8)
C9—C8—N17A—O1 −2.70 (13) C6—C14—C1B—C8 1.43 (9)
C9—C8—N17A—C6 176.94 (7) C6—C5—C4—C3 −0.39 (13)
C8—C9—C15—C13 −179.56 (7) C5—C6—N17A—O1 −0.58 (14)
C8—N1A—C14—C2 −179.99 (9) C5—C6—N17A—C8 179.76 (8)
C8—N1A—C14—C6 1.43 (9) C1B—C8—N17A—O1 −177.87 (8)
C8—C17—C6—C14 −0.88 (9) C1B—C8—N17A—C6 1.78 (9)
C8—C17—C6—C5 179.76 (8) C1B—C14—C2—C3 −178.72 (8)
N1A—C8—C17—O1 −177.87 (8) C1B—C14—C6—C5 179.09 (7)
N1A—C8—C17—C6 1.78 (9) C1B—C14—C6—N17A −0.32 (9)
N1A—C14—C2—C3 −178.72 (8) N17A—C8—C1B—O2 175.39 (8)
N1A—C14—C6—C17 −0.32 (9) N17A—C8—C1B—C14 −1.97 (9)
N1A—C14—C6—C5 179.09 (7) N17A—C6—C5—C4 179.29 (8)
C14—C2—C3—C4 −0.07 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.43 3.1077 (16) 128
C11—H11···O1ii 0.95 2.57 3.2327 (17) 127

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y+1, −z+1.

Table 2. Weak hydrogen bond table of compound 2

No classical hydrogen bonds found. For C—H···acceptor interactions, see: Steiner, Th., (1996), Cryst. Rev., 6, 1-57 H-Bond classification [Jeffrey, G. A., Maluszynska, H. & Mitra, J., (1985), Int J. Biol. Macromol. 7, 336-348]

S.No D-H···A H···A (Å) D···A (Å) 〈D-H···.A (°)
1 C5-H5···O2(a) 2.43 3.1077 (16) 128
2 C11-H11···O1(b) 2.57 3.2327 (17) 127

Symmetry codes: (i) x,-1+y,z (ii) 2-x,1-y,1-z .

Funding Statement

Funding for this research was provided by: Science and Engineering Research Board (grant No. CRG/2021/005729 to Chepuri V. Ramana); Science and Engineering Research Board (grant No. SRG/2023/000209 to Srinu Tothadi).

References

  1. Berti, C., Colonna, M., Greci, L. & Marchetti, L. (1975). Tetrahedron, 31, 1745–1753.
  2. Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, T., Li, M. & Liu, J. (2018). Cryst. Growth Des. 18, 2765–2783.
  4. Chipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc. 118, 11217–11224.
  5. Clegg, W. (2005). CSD Communication (refcode SAWYAR). CCDC, Cambridge, England.
  6. Clegg, W. & Elsegood, M. R. J. (2005). CSD Communication (refcode SAZQIU). CCDC, Cambridge, England.
  7. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
  8. Dhote, P. S., Halnor, S. V. & Ramana, C. V. (2021). Chem. Rec. 21, 3546–3558. [DOI] [PubMed]
  9. Dhote, P. S., Patel, P., Vanka, K. & Ramana, C. V. (2021). Org. Biomol. Chem. 19, 7970–7994. [DOI] [PubMed]
  10. Dhote, P. S., Pund, K. A. & Ramana, C. V. (2021). J. Org. Chem. 86, 10874–10882. [DOI] [PubMed]
  11. Dhote, P. S. & Ramana, C. V. (2019). Org. Lett. 21, 6221–6224. [DOI] [PubMed]
  12. Dhote, P. S. & Ramana, C. V. (2021). Org. Lett. 23, 2632–2637. [DOI] [PubMed]
  13. Dhote, P. S. & Ramana, C. V. (2022). Adv. Synth. Catal. 364, 1122–1133.
  14. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  15. Fu, W. & Song, Q. (2018). Org. Lett. 20, 393–396. [DOI] [PubMed]
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Gu, W., Zhang, Y., Hao, X.-J., Yang, F.-M., Sun, Q.-Y., Morris-Natschke, S. L., Lee, K.-H., Wang, Y.-H. & Long, C.-L. (2014). J. Nat. Prod. 77, 2590–2594. [DOI] [PubMed]
  18. Ji, Y., He, X., Peng, C. & Huang, W. (2019). Org. Biomol. Chem. 17, 2850–2864. [DOI] [PubMed]
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Kumar, C. V. S., Puranik, V. G. & Ramana, C. V. (2012). Chem. A Eur. J. 18, 9601–9611. [DOI] [PubMed]
  21. Kumar, C. V. S. & Ramana, C. V. (2014). Org. Lett. 16, 4766–4769. [DOI] [PubMed]
  22. Kumar, C. V. S. & Ramana, C. V. (2015). Org. Lett. 17, 2870–2873. [DOI] [PubMed]
  23. Liu, S., Zhao, F., Chen, X., Deng, G. & Huang, H. (2020). Adv. Synth. Catal. 362, 3795–3823.
  24. Liu, Y. & McWhorter, W. W. (2003). J. Org. Chem. 68, 2618–2622. [DOI] [PubMed]
  25. Nepveu, F., Kim, S., Boyer, J., Chatriant, O., Ibrahim, H., Reybier, K., Monje, M.-C., Chevalley, S., Perio, P., Lajoie, B., Bouajila, J., Deharo, E., Sauvain, M., Tahar, R., Basco, L., Pantaleo, A., Turini, F., Arese, P., Valentin, A., Thompson, E., Vivas, L., Petit, S. & Nallet, J.-P. (2010). J. Med. Chem. 53, 699–714. [DOI] [PubMed]
  26. Patel, P., Reddy, B. N. & Ramana, C. V. (2014). Tetrahedron, 70, 510–516.
  27. Patel, P. & Ramana, C. V. (2012). J. Org. Chem. 77, 10509–10515. [DOI] [PubMed]
  28. Ramana, C. V., Patel, P., Vanka, K., Miao, B. & Degterev, A. (2010). Eur. J. Org. Chem. pp. 5955–5966.
  29. Reddy, B. N. & Ramana, C. V. (2013). Chem. Commun. 49, 9767–9769. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  33. Wang, Z., Xu, S., Wang, K., Kong, N. & Liu, X. (2021). Asia. J. Org. Chem. 10, 1580–1594.
  34. Wetzel, A. & Gagosz, F. (2011). Angew. Chem. Int. Ed. 50, 7354–7358. [DOI] [PubMed]
  35. Xie, L. H., Li, Y., Dong, S. X., Feng, X. M. & Liu, X. H. (2021). Chem. Commun. 57, 239–242. [DOI] [PubMed]
  36. Zhang, X., Li, P., Lyu, C., Yong, W., Li, J., Pan, X., Zhu, X. & Rao, W. (2017). Adv. Synth. Catal. 359, 4147–4152.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001440/dx2056sup1.cif

e-80-00310-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001440/dx2056Isup2.hkl

e-80-00310-Isup2.hkl (383.5KB, hkl)
e-80-00310-sup4.docx (4.7MB, docx)

Supporting information. DOI: 10.1107/S2056989024001440/dx2056sup4.docx

e-80-00310-Isup4.cml (4.7KB, cml)

Supporting information file. DOI: 10.1107/S2056989024001440/dx2056Isup4.cml

CCDC reference: 2303503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES