Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 16;80(Pt 3):296–299. doi: 10.1107/S2056989024001439

Crystal structure of the sodium salt of mesotrione: a triketone herbicide

Olha Bereziuk a, Kateryna Gubina a,*, Viktor Trush a, Vladimir Ovchynnikov a
Editor: S-L Zhengb
PMCID: PMC10915670  PMID: 38456059

The crystal structure of the sodium salt of mesotrione [2-(4-methyl­sulfonyl-2-nitro­benzo­yl)cyclo­hexane-1,3-dione] is described. A one-dimensional polymer is formed by the coordination of all functional groups except the NO2 group. The coordination number of the sodium atom in the compound is 5.

Keywords: mesotrione, herbicides, sodium salt, crystal structure, TGA analysis

Abstract

The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methane­sulfonyl-2-nitro­phen­yl)carbon­yl]-3-oxo­cyclo­hex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH} n , is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol mol­ecule, and an O atom from the methyl­sulfonyl group of a neighboring mol­ecule. Simultaneously, an O atom of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages.

1. Chemical context

Mesotrione, 2-(4-methyl­sulfonyl-2-nitro­benzo­yl) cyclo­hexane-1,3-dione, is an organic compound classified as a triketone herbicide that is widely used in modern agriculture to control weeds and increase crop yields of corn (Mitchell et al., 2001). The coordination properties of triketone herbicides are dictated by the presence of three ketone functional groups, which act as ligands, forming stable coordination complexes with metal ions such as Cu2+, Co2+ and Fe3+ (Le Person et al., 2016). The stability of the chelates depends largely on the pH, as mesotrione is a weak acid that dissociates from the mol­ecular to the anionic form at higher pH, which is more resistant to hydrolysis and photolysis processes (Reynolds et al., 2007). For a comparative study, the crystal structure of the sodium salt of mesotrione, NaL, as well as analogues structures were retrieved from the Cambridge Structural Database (CSD, vesion 5.44, update of September 2023; Groom et al., 2016) and their geometries and confirmations are discussed (Kang et al., 2015); Hou et al., 2010; Wu et al., 2002). 1.

2. Structural commentary

Selected geometrical parameters of the sodium salt of mesotrione are summarized in Table 1. The ligand shows a polydentate function. Coordination to the sodium ion occurs through the formation of a 6-membered chelate involving two oxygen atoms from the two keto groups (Fig. 1). This leads to the occurrence of π-conjugation within the chelate ring, leading to a shortening of the C—C bonds by 0.06 (3) Å and lengthening of C=O bonds by 0.062 (3) Å in comparison to the free ligand HL (Table 2). In turn, in the mesotrione sodium salt, the occurrence of conjugation in the triketonate ligand results in a decrease in the conjugation between the benzene ring and the chelate ring, as evidenced by a 0.014 (3) Å increase in the C4—C8 bond length (Table 2).

Table 1. Selected geometric parameters (Å, °).

Na1—O6 2.2815 (17) O3—N1 1.218 (3)
Na1—O5 2.3191 (18) O4—N1 1.218 (2)
Na1—O5i 2.3215 (17) O5—C14 1.251 (3)
Na1—O8 2.347 (2) O6—C8 1.237 (3)
Na1—O1ii 2.3700 (19) O7—C10 1.245 (3)
Na1—Na1i 3.3927 (18) O8—C15 1.443 (3)
S1—O2 1.4386 (18) N1—C3 1.466 (3)
S1—O1 1.4445 (18) C4—C8 1.528 (3)
S1—C7 1.754 (3) C8—C9 1.440 (3)
S1—C1 1.773 (2) C9—C14 1.442 (3)
       
O6—Na1—O5 73.86 (6) O1ii—Na1—Na1i 120.78 (6)
O6—Na1—O5i 159.89 (7) O2—S1—O1 118.31 (11)
O5—Na1—O5i 86.04 (6) O2—S1—C7 108.75 (13)
O6—Na1—O8 93.06 (7) O1—S1—C7 108.40 (12)
O5—Na1—O8 122.94 (7) S1—O1—Na1ii 144.85 (11)
O5i—Na1—O8 98.52 (7) C14—O5—Na1 136.71 (15)
O6—Na1—O1ii 90.74 (7) C14—O5—Na1i 129.29 (15)
O5—Na1—O1ii 124.59 (7) Na1—O5—Na1i 93.96 (6)
O5i—Na1—O1ii 100.42 (7) C8—O6—Na1 136.56 (15)
O8—Na1—O1ii 110.49 (7) C15—O8—Na1 109.47 (15)
O6—Na1—Na1i 116.90 (6) O3—N1—O4 123.5 (2)
O5—Na1—Na1i 43.05 (4) O3—N1—C3 118.18 (19)
O5i—Na1—Na1i 42.99 (4) O4—N1—C3 118.3 (2)
O8—Na1—Na1i 118.24 (6)    

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 1.

Figure 1

The fragment of the structure of the sodium salt of mesotrione, showing the atom-numbering scheme for non-hydrogen atoms and displacement ellipsoids at 50% probability level.

Table 2. Comparison between some geometrical parameters (Å) in the chelate ring for HL and NaL .

Note that the numbering of atoms in the HL structure has brought into accordance with the numbering in the published structure.

Bond NaL HL Δ
C14—O5 1.252 (3) 1.314 (2) 0.062
C9—C14 1.442 (3) 1.382 (2) 0.06
C8—C9 1.439 (3) 1.448 (2) 0.009
C8—O6 1.237 (3) 1.239 (2) 0.02
C4—C8 1.528 (3) 1.514 (2) 0.014

The chelate fragment tends towards a planar structure. Simultaneously, the oxygen atom O5 of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat quadrangle Na1–O5–Na1i–O5i constituting the linker that forms the polymer chain (Fig. 2).

Figure 2.

Figure 2

Coordination polyhedron of the sodium salt of mesotrione.

The benzene and cyclo­hexane ring conformations in the structure of sodium salt and free ligand are similar. The benzene ring has a planar conformation, while the cyclo­hexane ring represents a semi chair with a bend in the line linking atoms C11–C13. The main geometrical characteristics of hydrogen bonds of the compound [NaL(EtOH)]·EtOH are given in Table 3.

Table 3. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9A—H9⋯O8 0.90 (4) 1.98 (4) 2.875 (5) 170 (4)
O9B—H9⋯O8 0.91 (4) 1.98 (4) 2.81 (2) 152 (4)
O8—H8⋯O7iii 0.76 (3) 1.92 (3) 2.681 (2) 171 (3)
C2—H2⋯O6ii 0.95 2.59 3.229 (3) 125
C7—H7B⋯O4ii 0.98 2.43 3.200 (3) 135
C7—H7C⋯O9A iv 0.98 2.37 3.349 (5) 176

Symmetry codes: (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

The environment sphere of the sodium ion comprises the oxygen atoms O5 and O6 of the chelate, the bridging oxygen atom O5i, the oxygen atom O8 from the coordinated ethanol mol­ecule, and the oxygen atom O1ii from the methyl sulfonyl group of a neighboring mol­ecule (Fig. 2). Using the SHAPE program (Version 2.1; Llunell et al., 2013), it was determined that the environment of the sodium atom is close to D 3h symmetry (trigonal bipyramid) with a convergence factor of 1.6.

3. Supra­molecular features

In the crystal structure of the sodium salt of mesotrione, the mol­ecules are assembled in a polymer chain (Fig. 3). Two types of hydrogen bonds are observed: the first between the oxygen atom of the uncoordinated ethanol mol­ecule (O9A) and the oxygen atom (O8) of the coordinated ethanol mol­ecule [2.870 (4) Å] and the second between the oxygen atom (O8) of a coordinated ethanol mol­ecule and the free oxygen atom (O7) of the keto group of a neighboring mol­ecule not involved in coordination [2.681 (2) Å]. In the structure of the coordination compound, three types of short contacts are observed, viz. C2—H2⋯O6ii [3.229 (3) Å], C7—H7B⋯O4ii [3.200 (3) Å], and C7—H7C⋯O9A iv [3.356 (4) Å] (symmetry codes are as per Table 3).

Figure 3.

Figure 3

Crystal packing in a cell with projection onto the ac plane. Hydrogen bonds are highlighted in blue.

Table 4. Experimental details.

Crystal data
Chemical formula [Na(C14H12NO7S)]·C2H6O
M r 453.43
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 9.9014 (5), 10.7214 (6), 11.9401 (6)
α, β, γ (°) 69.789 (3), 71.074 (3), 66.439 (3)
V3) 1064.45 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.36 × 0.23 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.679, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15328, 4340, 3259
R int 0.039
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.133, 1.05
No. of reflections 4340
No. of parameters 308
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.41

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008) and SHELXL (Sheldrick, 2015).

4. Experimental

The FT–IR spectra of the solids were recorded in a KBr matrix in the range 4000–400cm−1 using a Perkin-Elmer Spectrum BX2 spectrometer. 1H NMR spectra were recorded using a WR-400 Bruker NMR spectrometer at room temperature in DMSO-d6 , with TMS used as the inter­nal standard. Studies on the thermal properties of the sodium salt of mesotrione were conducted using a synchronous TG/DTA analyzer, the Shimadzu DTG-60H. The sample was heated in an air atmosphere to 600°C in aluminum crucibles at a heating rate of 10°C min−1.

5. Synthesis and crystallization

Mesotrione was obtained commercially. Other chemicals and solvents used in this study were purchased from Aldrich and used without further purification.

The sodium salt was prepared as shown in Fig. 4, where 2-(4-methyl­sulfonyl-2-nitro­benzo­yl)cyclo­hexane-1,3-dione was added to a freshly prepared sodium methyl­ate solution. For the monovalent metal sodium, the molar ratio of mesotrione to metal ions is 2:1. The resulting mixture was filtered, and the solvent was removed under vacuum. The yellowish crystalline powder (80% yield) was dissolved in a mixture of ethanol and methanol under heating (∼333 K) and then cooled to room temperature. After a while (∼72 h), monocrystals of the sodium salt of mesotrione, which were suitable for X-ray analysis, were formed.

Figure 4.

Figure 4

Synthesis of the sodium salt of mesotrione.

[NaL(EtOH)]·EtOH: IR (KBr, cm−1): 1642 [νas(C=O)keto], 1582 [νs(C=O)enol], 1524 [νas(NO2)], 1328 [νs(NO2)], 1312 [νas(SO2)], 1148 [νs(SO2)].

[NaL(EtOH)]·EtOH: NMR 1H (400 MHz, DMSO-d 6, 298 K, TMS): Δ = 1.75 ppm (m, 2H), 2.17 ppm (m, 4H), 7.29–7.31 ppm (d, 1H), 8.11–8.12 ppm (d, 1H), 8.45 ppm (s, 1H), 3.39 ppm (m, 3H, CH3), 4.39 ppm (m, 2H, OH), 1.05 ppm (m, 6H, CH3), 3.43 ppm (m, 4H, CH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Non-coordinated ethanol mol­ecules forming hydrogen bonds with the coordination fragment are disordered at two positions H9–O9A–C17A–C18A with an occupancy ratio of 0.8 and 0.2 for H9–O9B–C17B–C18B. Both disordered mol­ecules were refined anisotropically, with certain constraints applied to bond lengths and the same U ij components in the minor constituent. C-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding with U iso(H) = 1.2U eq(C).

7. Thermogravimetric analysis

Four different stages of decomposition of the mesotrione-based sodium complex were observed in the investigated temperature range (Fig. 5). The first stage of thermal decomposition is characterized by a distinct exothermic effect and a mass loss of ∼12% in the temperature range of 25–182°C. The exothermic effect is observed at a temperature of 147°C (m.p. = 149–151°C), corresponding to the loss of the first ethanol mol­ecule.

Figure 5.

Figure 5

The DTA (red line), DrTGA (pink line) and TGA (blue line) weight loss trace for the sodium salt of mesotrione.

At the second stage of the decomposition of the coordination compound in the temperature range 182–281°C, the loss (∼11%) of the second ethanol mol­ecule occurs, which is accompanied by an endothermic effect. The third stage of thermal decomposition is characterized by exothermic effect and a mass loss of ∼8.5% in the temperature range 280–340°C. The exothermic effect is observed at a temperature of 318.8°C, corresponding to the combustion of the entire organic components.

The fourth stage begins at 500°C and ends at 600°C and cannot be detected by the Shimadzu DTG-60H.

The TGV analysis and calculations based on its results show that the third and fourth stages consist of the combustion of the entire organic component of the mol­ecule and the formation of sodium pyro­sulfate.

According to the thermal studies, the fourth stage is accompanied by a strong exothermic effect and includes the further transformation of Na2S2O7 into Na2SO4, which is confirmed by the results of IR spectroscopy (Fig. 6).

Figure 6.

Figure 6

The IR spectrum for the final product after TGA (Na2SO4).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001439/oi2003sup1.cif

e-80-00296-sup1.cif (464.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001439/oi2003Isup2.hkl

e-80-00296-Isup2.hkl (345.7KB, hkl)

CCDC reference: 2072869

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Taras Shevchenko National University of Kyiv

supplementary crystallographic information

Crystal data

[Na(C14H12NO7S)]·C2H6O Z = 2
Mr = 453.43 F(000) = 476
Triclinic, P1 Dx = 1.415 Mg m3
a = 9.9014 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7214 (6) Å Cell parameters from 4340 reflections
c = 11.9401 (6) Å θ = 1.9–26.4°
α = 69.789 (3)° µ = 0.22 mm1
β = 71.074 (3)° T = 173 K
γ = 66.439 (3)° Prizm, yellow
V = 1064.45 (10) Å3 0.36 × 0.23 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 3259 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.039
φ and ω scans θmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −12→12
Tmin = 0.679, Tmax = 0.745 k = −13→10
15328 measured reflections l = −14→14
4340 independent reflections

Refinement

Refinement on F2 22 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3718P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4340 reflections Δρmax = 0.47 e Å3
308 parameters Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Na1 0.46287 (10) 0.49578 (10) 0.15007 (8) 0.0271 (2)
S1 −0.20329 (6) 0.18062 (6) 0.76443 (5) 0.02386 (17)
O1 −0.34311 (18) 0.29415 (18) 0.78282 (15) 0.0337 (4)
O2 −0.2105 (2) 0.04798 (18) 0.76771 (16) 0.0361 (5)
O3 −0.2679 (2) 0.6168 (2) 0.3932 (2) 0.0674 (8)
O4 −0.0518 (2) 0.60798 (18) 0.27209 (15) 0.0346 (4)
O5 0.37328 (18) 0.43201 (18) 0.02826 (14) 0.0295 (4)
O6 0.27562 (18) 0.4081 (2) 0.27717 (15) 0.0317 (4)
O7 −0.07874 (17) 0.3379 (2) 0.23648 (15) 0.0315 (4)
O8 0.6424 (2) 0.3351 (2) 0.26488 (16) 0.0312 (4)
H8 0.723 (4) 0.338 (3) 0.249 (3) 0.046 (10)*
N1 −0.1331 (2) 0.5579 (2) 0.36258 (18) 0.0288 (5)
C1 −0.0937 (2) 0.2401 (2) 0.6198 (2) 0.0201 (5)
C2 −0.1495 (2) 0.3751 (2) 0.5520 (2) 0.0204 (5)
H2 −0.243164 0.437557 0.583606 0.025*
C3 −0.0661 (2) 0.4176 (2) 0.4367 (2) 0.0198 (5)
C4 0.0718 (2) 0.3301 (2) 0.38681 (19) 0.0212 (5)
C5 0.1247 (3) 0.1941 (3) 0.4576 (2) 0.0331 (6)
H5 0.218752 0.131642 0.426409 0.040*
C6 0.0421 (3) 0.1481 (3) 0.5734 (2) 0.0310 (6)
H6 0.078492 0.054489 0.620104 0.037*
C7 −0.1024 (3) 0.1529 (3) 0.8723 (2) 0.0360 (6)
H7A −0.155609 0.115410 0.954261 0.054*
H7B −0.093852 0.242129 0.868964 0.054*
H7C −0.001251 0.085614 0.853847 0.054*
C8 0.1760 (2) 0.3745 (2) 0.2656 (2) 0.0228 (5)
C9 0.1652 (2) 0.3566 (2) 0.1551 (2) 0.0214 (5)
C10 0.0378 (3) 0.3228 (2) 0.1541 (2) 0.0226 (5)
C11 0.0423 (3) 0.2744 (3) 0.0483 (2) 0.0257 (5)
H11A −0.016765 0.354371 −0.007590 0.031*
H11B −0.006094 0.200559 0.079509 0.031*
C12 0.2020 (3) 0.2168 (3) −0.0229 (2) 0.0276 (5)
H12A 0.198851 0.194847 −0.095847 0.033*
H12B 0.258493 0.129274 0.028904 0.033*
C13 0.2798 (3) 0.3266 (3) −0.0617 (2) 0.0277 (5)
H13A 0.385898 0.286890 −0.103136 0.033*
H13B 0.229579 0.408757 −0.121612 0.033*
C14 0.2778 (2) 0.3753 (2) 0.0438 (2) 0.0222 (5)
C15 0.5810 (3) 0.3345 (3) 0.3924 (2) 0.0428 (7)
H15A 0.471176 0.351126 0.410164 0.051*
H15B 0.594531 0.413466 0.407564 0.051*
C16 0.6491 (4) 0.2045 (4) 0.4767 (3) 0.0584 (9)
H16A 0.601652 0.212192 0.560994 0.088*
H16B 0.633868 0.125845 0.464123 0.088*
H16C 0.757414 0.188282 0.461518 0.088*
O9A 0.7557 (4) 0.0676 (4) 0.2067 (4) 0.0470 (10) 0.815 (5)
C17A 0.6460 (4) −0.0028 (4) 0.2653 (3) 0.0462 (11) 0.815 (5)
H17B 0.603839 0.007405 0.350234 0.055* 0.815 (5)
H17A 0.695169 −0.104216 0.268723 0.055* 0.815 (5)
C18A 0.5179 (5) 0.0571 (5) 0.1970 (5) 0.0668 (14) 0.815 (5)
H18C 0.444488 0.006821 0.239201 0.100* 0.815 (5)
H18B 0.467983 0.157119 0.194744 0.100* 0.815 (5)
H18A 0.559228 0.045602 0.113309 0.100* 0.815 (5)
O9B 0.7192 (18) 0.101 (2) 0.174 (2) 0.051 (4) 0.185 (5)
C17B 0.5847 (18) 0.0752 (18) 0.1820 (15) 0.045 (2) 0.185 (5)
H17C 0.601398 0.030955 0.116176 0.054* 0.185 (5)
H17D 0.501848 0.165750 0.169959 0.054* 0.185 (5)
C18B 0.538 (2) −0.021 (2) 0.3067 (16) 0.080 (4) 0.185 (5)
H18D 0.445848 −0.036455 0.309274 0.120* 0.185 (5)
H18E 0.619223 −0.111630 0.318195 0.120* 0.185 (5)
H18F 0.519738 0.023078 0.371944 0.120* 0.185 (5)
H9 0.709 (4) 0.153 (4) 0.223 (4) 0.078 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0234 (5) 0.0371 (6) 0.0197 (5) −0.0147 (4) −0.0002 (4) −0.0042 (4)
S1 0.0249 (3) 0.0274 (3) 0.0163 (3) −0.0136 (3) −0.0001 (2) 0.0001 (2)
O1 0.0266 (9) 0.0376 (11) 0.0238 (9) −0.0107 (8) 0.0063 (7) −0.0027 (8)
O2 0.0493 (11) 0.0315 (10) 0.0288 (10) −0.0248 (9) −0.0026 (8) −0.0005 (8)
O3 0.0473 (14) 0.0426 (13) 0.0484 (14) 0.0102 (10) 0.0132 (11) 0.0123 (10)
O4 0.0408 (11) 0.0342 (10) 0.0242 (9) −0.0214 (9) −0.0043 (8) 0.0066 (8)
O5 0.0272 (9) 0.0438 (11) 0.0191 (9) −0.0216 (8) 0.0012 (7) −0.0036 (8)
O6 0.0289 (9) 0.0544 (12) 0.0191 (9) −0.0259 (9) −0.0009 (7) −0.0072 (8)
O7 0.0196 (9) 0.0551 (12) 0.0245 (9) −0.0200 (8) 0.0034 (7) −0.0137 (8)
O8 0.0224 (10) 0.0427 (11) 0.0277 (10) −0.0150 (8) −0.0043 (8) −0.0035 (8)
N1 0.0326 (12) 0.0253 (11) 0.0214 (11) −0.0096 (10) −0.0015 (9) −0.0015 (9)
C1 0.0213 (12) 0.0264 (13) 0.0138 (11) −0.0117 (10) −0.0014 (9) −0.0038 (9)
C2 0.0181 (11) 0.0241 (13) 0.0179 (11) −0.0072 (10) −0.0001 (9) −0.0070 (10)
C3 0.0226 (12) 0.0209 (12) 0.0173 (11) −0.0099 (10) −0.0054 (9) −0.0019 (9)
C4 0.0199 (12) 0.0302 (13) 0.0138 (11) −0.0119 (10) −0.0029 (9) −0.0020 (10)
C5 0.0224 (13) 0.0358 (15) 0.0222 (13) −0.0007 (11) 0.0027 (10) −0.0026 (11)
C6 0.0276 (13) 0.0248 (13) 0.0237 (13) −0.0031 (11) −0.0025 (10) 0.0044 (11)
C7 0.0393 (16) 0.0509 (18) 0.0184 (13) −0.0244 (14) −0.0039 (11) 0.0001 (12)
C8 0.0180 (11) 0.0279 (13) 0.0176 (12) −0.0083 (10) −0.0021 (9) −0.0006 (10)
C9 0.0182 (11) 0.0284 (13) 0.0156 (11) −0.0101 (10) −0.0011 (9) −0.0022 (10)
C10 0.0213 (12) 0.0235 (12) 0.0195 (12) −0.0078 (10) −0.0054 (10) 0.0004 (10)
C11 0.0251 (13) 0.0313 (14) 0.0237 (13) −0.0139 (11) −0.0043 (10) −0.0057 (11)
C12 0.0297 (13) 0.0288 (14) 0.0231 (13) −0.0094 (11) −0.0042 (10) −0.0064 (11)
C13 0.0276 (13) 0.0368 (15) 0.0164 (12) −0.0149 (11) 0.0007 (10) −0.0039 (10)
C14 0.0188 (11) 0.0264 (13) 0.0165 (11) −0.0069 (10) −0.0048 (9) 0.0009 (10)
C15 0.0311 (15) 0.060 (2) 0.0326 (16) −0.0143 (14) −0.0024 (12) −0.0106 (14)
C16 0.067 (2) 0.065 (2) 0.046 (2) −0.0285 (19) −0.0158 (17) −0.0064 (17)
O9A 0.034 (2) 0.042 (2) 0.059 (3) −0.0073 (17) −0.0052 (15) −0.0159 (18)
C17A 0.056 (3) 0.037 (2) 0.044 (2) −0.0167 (18) −0.0024 (18) −0.0139 (17)
C18A 0.047 (3) 0.063 (3) 0.090 (4) −0.023 (2) −0.009 (3) −0.017 (3)
O9B 0.034 (6) 0.048 (6) 0.057 (7) −0.005 (5) 0.001 (5) −0.017 (5)
C17B 0.056 (4) 0.037 (4) 0.045 (4) −0.013 (3) −0.006 (3) −0.020 (3)
C18B 0.052 (6) 0.075 (6) 0.097 (7) −0.015 (6) −0.010 (6) −0.015 (6)

Geometric parameters (Å, º)

Na1—O6 2.2815 (17) C9—C10 1.449 (3)
Na1—O5 2.3191 (18) C10—C11 1.504 (3)
Na1—O5i 2.3215 (17) C11—C12 1.521 (3)
Na1—O8 2.347 (2) C11—H11A 0.9900
Na1—O1ii 2.3699 (19) C11—H11B 0.9900
Na1—Na1i 3.3928 (18) C12—C13 1.520 (3)
S1—O2 1.4386 (18) C12—H12A 0.9900
S1—O1 1.4445 (18) C12—H12B 0.9900
S1—C7 1.754 (3) C13—C14 1.514 (3)
S1—C1 1.773 (2) C13—H13A 0.9900
O3—N1 1.218 (3) C13—H13B 0.9900
O4—N1 1.218 (2) C15—C16 1.459 (4)
O5—C14 1.251 (3) C15—H15A 0.9900
O6—C8 1.237 (3) C15—H15B 0.9900
O7—C10 1.245 (3) C16—H16A 0.9800
O8—C15 1.443 (3) C16—H16B 0.9800
O8—H8 0.76 (3) C16—H16C 0.9800
N1—C3 1.466 (3) O9A—C17A 1.4270 (19)
C1—C2 1.377 (3) O9A—H9 0.90 (4)
C1—C6 1.386 (3) C17A—C18A 1.531 (2)
C2—C3 1.384 (3) C17A—H17B 0.9900
C2—H2 0.9500 C17A—H17A 0.9900
C3—C4 1.390 (3) C18A—H18C 0.9800
C4—C5 1.393 (3) C18A—H18B 0.9800
C4—C8 1.528 (3) C18A—H18A 0.9800
C5—C6 1.393 (3) O9B—C17B 1.429 (2)
C5—H5 0.9500 O9B—H9 0.91 (4)
C6—H6 0.9500 C17B—C18B 1.539 (2)
C7—H7A 0.9800 C17B—H17C 0.9900
C7—H7B 0.9800 C17B—H17D 0.9900
C7—H7C 0.9800 C18B—H18D 0.9800
C8—C9 1.440 (3) C18B—H18E 0.9800
C9—C14 1.442 (3) C18B—H18F 0.9800
O6—Na1—O5 73.86 (6) O7—C10—C9 121.8 (2)
O6—Na1—O5i 159.89 (7) O7—C10—C11 118.6 (2)
O5—Na1—O5i 86.04 (6) C9—C10—C11 119.58 (19)
O6—Na1—O8 93.06 (7) C10—C11—C12 112.88 (19)
O5—Na1—O8 122.94 (7) C10—C11—H11A 109.0
O5i—Na1—O8 98.52 (7) C12—C11—H11A 109.0
O6—Na1—O1ii 90.74 (7) C10—C11—H11B 109.0
O5—Na1—O1ii 124.59 (7) C12—C11—H11B 109.0
O5i—Na1—O1ii 100.41 (7) H11A—C11—H11B 107.8
O8—Na1—O1ii 110.49 (7) C13—C12—C11 108.7 (2)
O6—Na1—Na1i 116.90 (6) C13—C12—H12A 109.9
O5—Na1—Na1i 43.05 (4) C11—C12—H12A 109.9
O5i—Na1—Na1i 42.99 (4) C13—C12—H12B 109.9
O8—Na1—Na1i 118.24 (6) C11—C12—H12B 109.9
O1ii—Na1—Na1i 120.78 (6) H12A—C12—H12B 108.3
O2—S1—O1 118.31 (11) C14—C13—C12 113.39 (19)
O2—S1—C7 108.75 (13) C14—C13—H13A 108.9
O1—S1—C7 108.40 (12) C12—C13—H13A 108.9
O2—S1—C1 107.70 (10) C14—C13—H13B 108.9
O1—S1—C1 107.16 (11) C12—C13—H13B 108.9
C7—S1—C1 105.83 (11) H13A—C13—H13B 107.7
S1—O1—Na1ii 144.85 (11) O5—C14—C9 123.8 (2)
C14—O5—Na1 136.71 (15) O5—C14—C13 117.54 (19)
C14—O5—Na1i 129.29 (15) C9—C14—C13 118.67 (19)
Na1—O5—Na1i 93.96 (6) O8—C15—C16 114.3 (3)
C8—O6—Na1 136.56 (15) O8—C15—H15A 108.7
C15—O8—Na1 109.47 (15) C16—C15—H15A 108.7
C15—O8—H8 108 (2) O8—C15—H15B 108.7
Na1—O8—H8 122 (2) C16—C15—H15B 108.7
O3—N1—O4 123.5 (2) H15A—C15—H15B 107.6
O3—N1—C3 118.18 (19) C15—C16—H16A 109.5
O4—N1—C3 118.3 (2) C15—C16—H16B 109.5
C2—C1—C6 120.9 (2) H16A—C16—H16B 109.5
C2—C1—S1 119.19 (17) C15—C16—H16C 109.5
C6—C1—S1 119.77 (18) H16A—C16—H16C 109.5
C1—C2—C3 118.5 (2) H16B—C16—H16C 109.5
C1—C2—H2 120.8 C17A—O9A—H9 104 (2)
C3—C2—H2 120.8 O9A—C17A—C18A 111.3 (4)
C2—C3—C4 122.8 (2) O9A—C17A—H17B 109.4
C2—C3—N1 117.48 (19) C18A—C17A—H17B 109.4
C4—C3—N1 119.59 (19) O9A—C17A—H17A 109.4
C3—C4—C5 117.3 (2) C18A—C17A—H17A 109.4
C3—C4—C8 125.3 (2) H17B—C17A—H17A 108.0
C5—C4—C8 117.2 (2) C17A—C18A—H18C 109.5
C4—C5—C6 121.1 (2) C17A—C18A—H18B 109.5
C4—C5—H5 119.5 H18C—C18A—H18B 109.5
C6—C5—H5 119.5 C17A—C18A—H18A 109.5
C1—C6—C5 119.4 (2) H18C—C18A—H18A 109.5
C1—C6—H6 120.3 H18B—C18A—H18A 109.5
C5—C6—H6 120.3 C17B—O9B—H9 115 (3)
S1—C7—H7A 109.5 O9B—C17B—C18B 111.6 (17)
S1—C7—H7B 109.5 O9B—C17B—H17C 109.3
H7A—C7—H7B 109.5 C18B—C17B—H17C 109.3
S1—C7—H7C 109.5 O9B—C17B—H17D 109.3
H7A—C7—H7C 109.5 C18B—C17B—H17D 109.3
H7B—C7—H7C 109.5 H17C—C17B—H17D 108.0
O6—C8—C9 126.1 (2) C17B—C18B—H18D 109.5
O6—C8—C4 113.4 (2) C17B—C18B—H18E 109.5
C9—C8—C4 119.87 (19) H18D—C18B—H18E 109.5
C8—C9—C14 120.88 (19) C17B—C18B—H18F 109.5
C8—C9—C10 119.83 (19) H18D—C18B—H18F 109.5
C14—C9—C10 119.3 (2) H18E—C18B—H18F 109.5

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O9A—H9···O8 0.90 (4) 1.98 (4) 2.875 (5) 170 (4)
O9B—H9···O8 0.91 (4) 1.98 (4) 2.81 (2) 152 (4)
O8—H8···O7iii 0.76 (3) 1.92 (3) 2.681 (2) 171 (3)
C2—H2···O6ii 0.95 2.59 3.229 (3) 125
C7—H7B···O4ii 0.98 2.43 3.200 (3) 135
C7—H7C···O9Aiv 0.98 2.37 3.349 (5) 176

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1.

References

  1. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Hou, Y.-J., Chu, W.-Y., Sui, J. & Sun, Z.-Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 465–466.
  4. Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o548–o549. [DOI] [PMC free article] [PubMed]
  5. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  6. Le Person, A., Siampiringue, M., Sarakha, M., Moncomble, A. & Cornard, J.-P. (2016). J. Photochem. Photobiol. Chem. 315, 76–86.
  7. Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain
  8. Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K. & Wichert, R. A. (2001). Pest. Manag. Sci. 57, 120–128. [DOI] [PubMed]
  9. Reynolds, J. D., James, J. R. & Pearson, A. M. (2007). US Patent 20070207929 A1.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222–2228. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024001439/oi2003sup1.cif

e-80-00296-sup1.cif (464.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001439/oi2003Isup2.hkl

e-80-00296-Isup2.hkl (345.7KB, hkl)

CCDC reference: 2072869

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES