Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 2;80(Pt 3):256–261. doi: 10.1107/S2056989024000926

Crystal structure, Hirshfeld surface analysis and DFT study of N-(2-nitro­phen­yl)male­imide

Maribel Montoya-Garcia a, Héctor Cortes-Hernandez a, Richard D’Vries b, Hoover Valencia-Sanchez a,*
Editor: F Di Salvoc
PMCID: PMC10915672  PMID: 38456043

The title compound crystallizes in the monoclinic system (space group P21/n) with two mol­ecules in the asymmetric unit, which are linked by C—H⋯O hydrogen bonds. Hirshfeld surface analysis showed that the most significant contributions to the crystal packing are from H⋯O/O⋯H, H⋯C/C⋯H and H⋯H inter­actions. A DFT study was conducted using three different levels of theory.

Keywords: crystal structure; nitro­phenyl­male­imide; Hirsfeld surface analysis; 1-(2-nitro­phen­yl)-1H-pyrrole-2,5-dione

Abstract

The title compound [systematic name: 1-(2-nitro­phen­yl)pyrrole-2,5-dione], C10H6N2O4, crystallizes in the monoclinic system (space group P21/n) with two mol­ecules in the asymmetric unit, which are linked by C—H⋯O hydrogen bonds. Hirshfeld surface analysis showed that the most significant contributions to the crystal packing are from H⋯O/O⋯H, H⋯C/C⋯H and H⋯H inter­actions, which contribute 54.7%, 15.2% and 15.6%, respectively. A DFT study was conducted using three different levels of theory [(B3LYP/6–311+G(d,p), wB97XD/Def2TZVPP and LC-wpbe/6–311(2 d,2p)] in order to determine the stability, structural and electronic properties of the title mol­ecule with a view to its potential applications and photochemical and copolymer properties.

1. Chemical context

1-(2-Nitro­phen­yl)pyrrole-2,5-dione is a compound derived from N-aryl male­imide (cyclic N-imides), with the –CO—N(R)—CO– functional group, where R is an aryl group (Hargreaves et al., 1970) . N-phenyl­male­imides substituted by the N atom present various reactivity and photochemical properties that depend on the substituent group and the torsion angle between imide and benzene rings. These mol­ecules have been used as a copolymer, providing greater structural rigidity, increase in dielectric properties and thermal stability compared to the unreacted polymer (Mejia et al., 2021; Shi et al., 2020). The importance of these mol­ecules is due to the potential reactivity of the double bonds that act as dienophiles, promoting Diels–Alder reactions for the formation of new organic mol­ecules (Galkin et al., 2022; Bastin et al., 2019). Likewise, these families of compounds present good fungicidal properties against human pathogenic fungi, anti-leukemia activity, and differential cytotoxicity against cancer cells, among other biological activities (Paprocka et al. 2022; Mutlaq et al., 2021; Ali et al., 2017; Chen et al., 2017). 1.

N-2-nitro­phenyl­male­imide [1-(2-nitro­phen­yl)pyrrole-2,5-dione], commonly called N-ortho-nitro­phenyl­male­imide, is used in homopolymers and copolymers with methyl methacrylate with excellent thermal stability, high polydispersity, and solubility in non-polar and moderately polar solvents. However, the substitution of the nitro group in the ortho position causes intra­molecular ring repulsion or steric hindrance with the male­imide ring (Kumar & Jagrati, 2023; Kumar 2022). Recently, in our group, a new water-friendly supra­molecular polymeric material obtained from the blend of isomers of nitro­phenyl­male­imide and carb­oxy-methyl­cellulose (CMC) was reported (García et al., 2023). The polymers obtained present inter­esting properties such as high viscosity, resistance to acids, bases, and oxidant substances; also, this material presents an increase in thermal properties compared to CMC, and good biodegradability. However, among the polymers obtained, those synthesized from ortho-male­imides do not show good properties because of the repulsion of the nitro group with the imide ring, which affects the formation of hydrogen bonds (García et al., 2023). Likewise, in a theoretical study of 43 mol­ecules of substituted N-phenyl­male­imides (including 2-nitro­phenyl­male­imide) in different positions using the B3LYP/ 6-311+G (d,p) method, it was found that the torsion angle affects the structural, electronic and energetic properties. Besides, the values of the global and local reactivity descriptors depend on the type of substituent (electron donor or acceptor groups). The substitution of the nitro group in the ortho position has greater global hardness and lower electrophilicity values than the meta and para isomers, suggesting a lower reactivity than for its isomers (Cortes & Castro, 2016). Continuing with the development of the synthetic methodology for obtaining all the isomers of nitro­phenyl­male­imide (Cortes & Castro, 2016; Moreno-Fuquen et al., 2003, 2006), this work presents the synthesis, characterization by single-crystal X-ray diffraction, and analysis of supra­molecular inter­actions by Hirshfeld surface analysis from the structural data. In addition, theoretical calculations of structural and electronic properties were performed by density functional theory (DFT). Finally, the effect of the repulsion of the nitro group that affects the physical and chemical properties was examined.

2. Structural commentary

The asymmetric unit is formed by two independent mol­ecules (Fig. 1). Each mol­ecule consists of fused benzene and male­imide rings. In both conformers, a large dihedral angle is subtended between the rings with values of 73.94 (2)° for the C1–C6 and N1/C7–C10 rings and 55.02 (2)° for the C11–C16 and N2/C17–C20rings. A slight difference is observed in the torsion angle between the aromatic ring and the nitro group in the two conformers with values of 37.8 (3) and 38.8 (2)° for C2—C3—N3—O3 and C12—C13—N4—O8, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only one component of the disordered O4 atom is shown for clarity.

3. Supra­molecular features

In the crystal, the two conformers are arranged in lamellae in the (110) plane, with conformers A being linked along the a- and b-axis directions by C2—H2⋯O1, C6—H6⋯O1 and C8—H8⋯O2 hydrogen bonds. Conformers B are linked along the a- and b-axis directions through C15—H15⋯O5, C18—H18⋯O5 and C12—H12⋯O7 inter­actions (Fig. 2, Table 1). The formed layers are joined by C5—H5⋯O7 and C19—H19⋯O2 hydrogen bonds.

Figure 2.

Figure 2

Conformers A and B of o-nitro­phenyl­male­imide.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.93 2.64 3.457 (3) 148
C18—H18⋯O5ii 0.93 2.61 3.343 (3) 136
C16—H16⋯O3iii 0.93 2.79 3.210 (3) 109
C15—H15⋯O5iv 0.93 2.68 3.455 (3) 142
C19—H19⋯O2v 0.93 2.61 3.362 (3) 139
C19—H19⋯O6vi 0.93 2.61 3.388 (3) 141
C2—H2⋯O1vii 0.93 2.66 3.358 (3) 133

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic .

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer 17.5 software (Spackman et al., 2021). Fig. 3 shows the Hirshfeld surface mapped over d norm for the title compound, where red denotes shorter contacts (shorter than the sum of the van der Waals radii), blue denotes longer contacts (longer than the sum of the van der Waals radii), and white regions indicate contacts equal to the sum of the van der Waals radii. The red region in Fig. 3 represents the strongest and most important contacts represented by inter­molecular C—H⋯O hydrogen bonds. To qu­antify the supra­molecular inter­actions that give rise to crystal packing, two-dimensional fingerprint plots (FPP) were generated and these are shown in in Fig. 4. The FPP analysis reveals that H⋯O/O⋯H (54.7%) H⋯C/C⋯H (15.2%), and H⋯H (15.6%) are the most important inter­actions responsible for the largest contributions to the crystal packing of the title compound.

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over d norm.

Figure 4.

Figure 4

The fingerprint plots of the title compound delineated into the various labeled contacts.

5. Computational details and DFT calculations

Computational quantum chemistry calculations were performed for 1-(2-nitro­phen­yl)pyrrole-2,5-dione using density functional theory (DFT). The following levels of theory were used to compare the change in stability, structural and electronic properties: B3LYP/6-311+G(d,p) (Clark et al., 1983; Lee & Yang, 1988; Becke, 1993), wB97XD/Def2TZVPP (Weigend, & Ahlrichs, 2005; Chai & Head-Gordon, 2008), and LC-wpbe/6-311g(2d,2p) (Clark et al., 1983; Vydrov et al., 2006). For all calculations, the quantum chemistry Gaussian 16 (Frisch et al., 2019) software was employed. The mol­ecular geometries were fully optimized with a threshold of 10−5 a.u. for RMS forces. The optimized structures were confirmed to be true local minima by estimating the normal vibrations. Additionally, for 1-(2-nitro­phen­yl)pyrrole-2,5-dione, the potential energy curve was inspected through variations of the dihedral angle (C, N imide ring and C, C phenyl ring) at inter­vals of 15°, with the reference energy being the angle of 0° between the male­imide and benzene ring. At each point, the three levels of theory were used. The optimized geometry of 1-(2-nitro­phen­yl)pyrrole-2,5-dione is shown in Fig. 5. Some of the structural parameters such as bond lengths, bond angles, and the dihedral angle between the imide and phenyl rings are summarized in Table 2.

Figure 5.

Figure 5

The optimized geometry of 1-(2-nitro­phen­yl)pyrrole-2,5-dione by (a) B3LYP/6–311+G (d,p); (b) wB97XD/Def2TZVPP and (c) LC-wpbe/6–311 g(2d,2p).

Table 2. Experimental and calculated bond lengths and angles (Å, °) of 1-(2-nitro­phen­yl)pyrrole-2,5-dione.

The numbering scheme used is that shown in Fig. 6.

Structural parameter Calculation Method     Experimental
  B3LYP/6–311+G (d,p) wB97XD/Def2TZVPP LC-wpbe/6–311g(2d,2p)  
Bond lengths        
C8—C9, C18—C19 1.332 1.324 1.319 1.304, 1.308
C4—N1, C14—N2 1.416 1.409 1.409 1.416, 1.420
C7—O2, C10—O1, C20—O6, C17—O5 1.204, 1.205 1.197 1.198, 1200 1.200, 1.207
C3—N3, C13—N4 1.480 1.472 1.465 1.460, 1.465
N3—O3, N3—O4, N4—O7, N4—O8 1.221,1.225 1.209, 1.213 1.209, 1.212 1.261, 1.230, 1.222, 1.215
N1—C7, N1—C10, N2—C20, N2—C17 1.411, 1.412 1.399, 1.400 1.394, 1.395 1.388, 1.389, 1.392, 1.394
Mean percentage error (MPE) 0.949 0.516 0.283  
Bond angles        
C4—N1—C7, C4—N1—C10, C14—N2—C20, C14—N2—C17 124.7, 124.9 124.5, 124.7 124.9, 125.0 123.9, 125.6, 124.8, 125.2
O1—C10—C9, O2—C7—C8, O6—C20—C19, O5—C17—C18 128.6, 128.3 128.3, 128.5 128.5, 128.8 129.3, 129.5, 129.1, 129.2
C10—N1—C7, C20—N2—C17 110.2 110.4 110.1 109.6, 109.9
O3—N3—O4, O7—N4—O8 124.9 125.1 124.6 121.4.0, 124.0
N1—C4—C3, N2—C14—C13 123.0 122.7 122.5 122.7, 122.5
N1—C4—C5, N2—C14—C15 118.9 118.9 119.2 119.5, 119.2
Mean percentage error (MPE) 0.354 0.384 0.163  
Torsion angles        
C7—N1—C4—C3, C20—N2—C14—C15 123.2 124.6 125.6 100.0, 126.2
Mean percentage error (MPE) 2.377 1.268 0.475  

The structures present MPEs (Mean Percentage Errors) lower than 2.5% for the mean of the parameters compared to the three levels of theory evaluated. However, some values show a higher difference. For example, the C=C bond length of the male­imide ring is 0.024–0.011 Å longer compared to the experimental value. This discrepancy can be attributed to the presence of hydrogen-bonding inter­actions in the crystal structure of these mol­ecules. The dihedral angle is a crucial parameter that affects the properties of N-phenyl­male­imide derivatives (Cortes & Castro, 2016). For this structural parameter, a small difference was observed between the experimental angle and those obtained by DFT calculations. From the results obtained, it is concluded that the calculated structural parameters (lengths, bond angles and dihedral angle) using different levels of DFT theory agree excellently with the experimental data. Moreover, functionals including dispersion (wB97XD) and long-range correction (LC-wpbe) show values closer to those obtained experimentally.

In 1-(2-nitro­phen­yl)pyrrole-2,5-dione, a repulsion is observed between the nitro group (NO2) and the oxygen atoms of the carbonyl group (C=O) of the male­imide ring, leading to a high value of the dihedral angle. To investigate this, the dihedral angle (C20—N2—C14—C15) of N-2-nitro­phenyl­male­imide was varied and the potential energy surface (PES) was determined using the three levels of theory. Fig. 6 illustrates a similar trend in the electronic energy values and zero-point energy corrections (ZPE) for all functionals used. For 1-(2-nitro­phen­yl)pyrrole-2,5-dione, a rotational barrier of approximately 150 kcal mol−1 determined with all three functionals was observed. This indicates the presence of a repulsive effect between NO2 and CO, resulting in rotamers with increased stability at specific spatial orientations. Inter­estingly, the angles observed in the crystalline dimers align with the most energetically stable rotamers calculated. Furthermore, the levels of theory incorporating including dispersion and long-range correction exhibit lower energetic values for each rotamer calculated (Fig. 5). These results are in agreement with previous studies using DFT methods (Cortes & Castro, 2016; Mao et al., 2011).

Figure 6.

Figure 6

PES for 1-(2-nitro­phen­yl)pyrrole-2,5-dione with three DFT methods.

6. Synthesis and crystallization

The synthesis of o-nitro­phenyl­maleimide was performed following the procedure described by Cava et al. (1961), which involves two steps (Fig. 7). In the first step, 2-nitro­(N-phen­yl)maleanilic acid was obtained by mixing 1.30 g of maleic anhydride and 25 mL of ethyl ether as solvent. Once the maleic anhydride was dissolved, a solution of o-nitro­aniline (1.83 g) in 5 mL of ether was added dropwise through the burette under constant stirring. The reaction mixture was stirred at room temperature for 1 h and then cooled in an ice bath. The product was obtained by vacuum filtration and used for the subsequent step of the synthesis. The reaction yield in the first step was 92%.

Figure 7.

Figure 7

Reaction scheme for the synthesis of the title compound.

In the second step, N-(2-nitro­phen­yl)male­imide was obtained. In an Erlenmeyer flask, 16 mL of acetic anhydride and 1.30 g of sodium acetate anhydride were mixed. The previously obtained maleanilic acid (2.88 g) was then added to the reaction mixture under constant stirring and heating for 30 min. The reaction mixture was cooled to room temperature. The resulting solid was removed by vacuum filtration, washed three times with 5 mL portions of cool water and 5 mL of petroleum ether. 2.02 g of the compound were obtained in a yield in the second step of 76%. The final percentage yield in the synthesis was 69.85%.

Recrystallization was carried out using chloro­form, resulting in the formation of yellow prismatic crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å, U iso(H) = 1.2U eq(C)]. The positional disorder observed in the nitro group (O4A, O4B) was modeled by setting the occupancy factor to 0.5 for each atom.

Table 3. Experimental details.

Crystal data
Chemical formula C10H6N2O4
M r 218.17
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.331 (5), 7.769 (5), 17.558 (5)
β (°) 91.969 (5)
V3) 1953.7 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.60 × 0.51 × 0.36
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis PRO; Agilent, 2012)
T min, T max 0.983, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 8808, 5183, 2815
R int 0.020
(sin θ/λ)max−1) 0.681
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.122, 1.02
No. of reflections 4548
No. of parameters 299
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000926/vu2003sup1.cif

e-80-00256-sup1.cif (293.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000926/vu2003Isup2.hkl

e-80-00256-Isup2.hkl (362.3KB, hkl)
e-80-00256-Isup3.cml (3.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989024000926/vu2003Isup3.cml

CCDC reference: 2328386

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Universidad Tecnologica de Pereira (UTP) and Vicerrectoria de Investigaciónes, Innovación y Extensión from UTP for support of project 9–23-1. RD is grateful to the Universidad del Cauca for support.

supplementary crystallographic information

Crystal data

C10H6N2O4 F(000) = 896
Mr = 218.17 Dx = 1.483 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.331 (5) Å Cell parameters from 2214 reflections
b = 7.769 (5) Å θ = 3.6–29.5°
c = 17.558 (5) Å µ = 0.12 mm1
β = 91.969 (5)° T = 293 K
V = 1953.7 (15) Å3 Needle, clear yellow
Z = 8 0.60 × 0.51 × 0.36 mm

Data collection

Xcalibur, Atlas, Gemini diffractometer Rint = 0.020
Radiation source: Enhance (Mo) X-ray Source θmax = 29.0°, θmin = 3.6°
ω scans h = −18→17
Absorption correction: analytical (CrysAlisPro; Agilent, 2012) k = −7→10
Tmin = 0.983, Tmax = 0.988 l = −16→23
8808 measured reflections 3 standard reflections every 60 min
5183 independent reflections intensity decay: none
2815 reflections with I > 2σ(I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.6076P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.21 e Å3
4548 reflections Δρmin = −0.19 e Å3
299 parameters Extinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0083 (8)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N2 0.57741 (10) 0.7048 (2) 0.17503 (8) 0.0448 (4)
O6 0.47003 (10) 0.6430 (2) 0.07816 (8) 0.0720 (5)
O8 0.42833 (12) 0.53297 (19) 0.23870 (10) 0.0726 (5)
N1 0.23720 (10) 0.4967 (2) 0.46284 (9) 0.0476 (4)
O5 0.70442 (11) 0.6767 (2) 0.25807 (9) 0.0809 (5)
N4 0.38702 (12) 0.6666 (2) 0.22501 (9) 0.0521 (4)
O2 0.11155 (11) 0.4289 (2) 0.53495 (10) 0.0818 (5)
O7 0.30425 (11) 0.6748 (2) 0.20630 (10) 0.0807 (5)
O1 0.33431 (11) 0.6568 (3) 0.38930 (11) 0.0936 (6)
C13 0.43816 (12) 0.8286 (2) 0.23277 (10) 0.0389 (4)
C14 0.53010 (12) 0.8421 (2) 0.21045 (10) 0.0396 (4)
N3 0.37727 (17) 0.6062 (3) 0.57413 (12) 0.0727 (6)
O4A 0.3015 (11) 0.6806 (17) 0.5880 (10) 0.129 (5) 0.5
C4 0.30211 (13) 0.3785 (3) 0.49581 (10) 0.0458 (5)
C12 0.39261 (14) 0.9659 (2) 0.26434 (11) 0.0493 (5)
H12 0.330597 0.955447 0.277613 0.059*
C15 0.57553 (14) 0.9976 (3) 0.22127 (11) 0.0505 (5)
H15 0.636591 1.010733 0.205935 0.061*
C20 0.54333 (14) 0.6143 (3) 0.11138 (11) 0.0514 (5)
C17 0.66103 (13) 0.6319 (3) 0.20183 (12) 0.0531 (5)
C3 0.37054 (14) 0.4268 (3) 0.54888 (11) 0.0523 (5)
C7 0.14624 (14) 0.5155 (3) 0.48641 (12) 0.0538 (5)
C11 0.43925 (16) 1.1178 (3) 0.27605 (12) 0.0573 (5)
H11 0.409483 1.210544 0.298310 0.069*
C16 0.53049 (16) 1.1328 (3) 0.25470 (12) 0.0598 (6)
H16 0.562129 1.236008 0.263028 0.072*
C10 0.25829 (15) 0.6291 (3) 0.41321 (12) 0.0579 (6)
O3 0.45594 (16) 0.6661 (3) 0.58559 (13) 0.1184 (8)
C19 0.61368 (15) 0.4812 (3) 0.09608 (13) 0.0609 (6)
H19 0.610624 0.403119 0.055928 0.073*
C9 0.17067 (16) 0.7259 (3) 0.40028 (13) 0.0652 (6)
H9 0.162690 0.819245 0.367519 0.078*
C5 0.29837 (16) 0.2077 (3) 0.47417 (13) 0.0640 (6)
H5 0.253871 0.171906 0.437746 0.077*
C18 0.68104 (16) 0.4907 (3) 0.14809 (13) 0.0639 (6)
H18 0.733352 0.419827 0.150902 0.077*
C8 0.10613 (15) 0.6601 (3) 0.44202 (13) 0.0652 (6)
H8 0.044719 0.698340 0.443510 0.078*
C2 0.43382 (16) 0.3107 (4) 0.57970 (13) 0.0720 (7)
H2 0.480623 0.346376 0.614146 0.086*
C1 0.42634 (19) 0.1411 (4) 0.55849 (16) 0.0805 (8)
H1 0.467045 0.060191 0.580155 0.097*
C6 0.3598 (2) 0.0902 (3) 0.50596 (16) 0.0802 (8)
H6 0.355932 −0.024794 0.491543 0.096*
O4B 0.3109 (8) 0.6914 (10) 0.5784 (7) 0.076 (2) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0371 (8) 0.0495 (9) 0.0474 (9) 0.0031 (7) −0.0032 (6) −0.0111 (8)
O6 0.0586 (9) 0.0980 (13) 0.0582 (9) 0.0062 (9) −0.0134 (7) −0.0229 (9)
O8 0.0853 (12) 0.0376 (8) 0.0959 (12) −0.0044 (8) 0.0160 (9) 0.0038 (8)
N1 0.0399 (9) 0.0537 (10) 0.0494 (9) 0.0047 (7) 0.0030 (7) 0.0106 (8)
O5 0.0592 (9) 0.1078 (14) 0.0739 (10) 0.0278 (9) −0.0224 (8) −0.0266 (10)
N4 0.0487 (10) 0.0508 (11) 0.0569 (10) −0.0118 (8) 0.0034 (8) 0.0013 (8)
O2 0.0567 (10) 0.0974 (13) 0.0925 (12) −0.0001 (9) 0.0200 (8) 0.0336 (11)
O7 0.0474 (9) 0.0968 (13) 0.0973 (12) −0.0276 (9) −0.0077 (8) −0.0006 (10)
O1 0.0575 (10) 0.1259 (16) 0.0987 (13) 0.0074 (10) 0.0215 (9) 0.0615 (12)
C13 0.0386 (9) 0.0354 (9) 0.0425 (9) −0.0017 (8) −0.0025 (7) 0.0041 (8)
C14 0.0363 (9) 0.0416 (10) 0.0405 (9) −0.0002 (8) −0.0027 (7) −0.0025 (8)
N3 0.0769 (15) 0.0820 (16) 0.0584 (12) −0.0005 (14) −0.0112 (11) −0.0154 (11)
O4A 0.135 (9) 0.133 (9) 0.119 (7) 0.036 (6) 0.025 (5) −0.042 (6)
C4 0.0436 (10) 0.0491 (11) 0.0451 (10) 0.0054 (9) 0.0065 (8) 0.0069 (9)
C12 0.0442 (11) 0.0474 (11) 0.0566 (12) 0.0075 (9) 0.0058 (9) 0.0066 (10)
C15 0.0451 (11) 0.0543 (12) 0.0522 (11) −0.0121 (10) 0.0026 (8) −0.0039 (10)
C20 0.0498 (11) 0.0568 (12) 0.0476 (11) −0.0055 (10) 0.0018 (9) −0.0089 (10)
C17 0.0433 (11) 0.0624 (13) 0.0533 (12) 0.0083 (10) −0.0013 (9) −0.0057 (10)
C3 0.0533 (12) 0.0610 (13) 0.0428 (10) 0.0100 (10) 0.0022 (9) 0.0003 (10)
C7 0.0421 (11) 0.0620 (13) 0.0575 (12) −0.0005 (10) 0.0046 (9) 0.0073 (11)
C11 0.0709 (14) 0.0407 (11) 0.0609 (13) 0.0093 (11) 0.0090 (11) −0.0009 (10)
C16 0.0753 (15) 0.0423 (11) 0.0618 (13) −0.0159 (11) 0.0035 (11) −0.0075 (10)
C10 0.0515 (12) 0.0702 (14) 0.0520 (12) 0.0017 (11) 0.0024 (9) 0.0176 (11)
O3 0.1028 (16) 0.1317 (19) 0.1193 (17) −0.0274 (14) −0.0180 (13) −0.0397 (14)
C19 0.0650 (14) 0.0576 (13) 0.0609 (13) −0.0005 (11) 0.0105 (11) −0.0191 (11)
C9 0.0606 (14) 0.0675 (15) 0.0669 (14) 0.0084 (12) −0.0075 (11) 0.0223 (12)
C5 0.0690 (15) 0.0547 (13) 0.0681 (14) −0.0004 (11) 0.0015 (11) 0.0029 (12)
C18 0.0601 (14) 0.0630 (14) 0.0690 (14) 0.0163 (11) 0.0096 (11) −0.0083 (12)
C8 0.0474 (12) 0.0747 (15) 0.0735 (14) 0.0156 (12) 0.0007 (11) 0.0109 (13)
C2 0.0615 (14) 0.100 (2) 0.0540 (13) 0.0235 (14) −0.0013 (10) 0.0112 (14)
C1 0.0797 (18) 0.086 (2) 0.0766 (17) 0.0393 (16) 0.0147 (14) 0.0276 (16)
C6 0.095 (2) 0.0514 (14) 0.0954 (19) 0.0169 (14) 0.0168 (16) 0.0094 (14)
O4B 0.081 (5) 0.040 (3) 0.106 (6) 0.015 (3) −0.021 (4) −0.014 (3)

Geometric parameters (Å, º)

N2—C14 1.419 (2) C15—H15 0.9300
N2—C20 1.394 (2) C15—C16 1.375 (3)
N2—C17 1.393 (2) C20—C19 1.475 (3)
O6—C20 1.205 (2) C17—C18 1.481 (3)
O8—N4 1.215 (2) C3—C2 1.377 (3)
N1—C4 1.416 (2) C7—C8 1.473 (3)
N1—C7 1.389 (2) C11—H11 0.9300
N1—C10 1.388 (3) C11—C16 1.377 (3)
O5—C17 1.200 (2) C16—H16 0.9300
N4—O7 1.222 (2) C10—C9 1.475 (3)
N4—C13 1.460 (2) C19—H19 0.9300
O2—C7 1.207 (2) C19—C18 1.308 (3)
O1—C10 1.200 (2) C9—H9 0.9300
C13—C14 1.391 (2) C9—C8 1.304 (3)
C13—C12 1.377 (3) C5—H5 0.9300
C14—C15 1.382 (3) C5—C6 1.373 (3)
N3—O4A 1.261 (15) C18—H18 0.9300
N3—C3 1.465 (3) C8—H8 0.9300
N3—O3 1.230 (3) C2—H2 0.9300
N3—O4B 1.164 (11) C2—C1 1.372 (4)
C4—C3 1.381 (3) C1—H1 0.9300
C4—C5 1.381 (3) C1—C6 1.362 (4)
C12—H12 0.9300 C6—H6 0.9300
C12—C11 1.369 (3)
C20—N2—C14 124.81 (15) C2—C3—C4 122.0 (2)
C17—N2—C14 125.19 (15) N1—C7—C8 106.01 (18)
C17—N2—C20 109.84 (16) O2—C7—N1 124.43 (19)
C7—N1—C4 123.81 (16) O2—C7—C8 129.5 (2)
C10—N1—C4 125.65 (16) C12—C11—H11 120.2
C10—N1—C7 109.61 (16) C12—C11—C16 119.69 (19)
O8—N4—O7 124.03 (18) C16—C11—H11 120.2
O8—N4—C13 118.58 (16) C15—C16—C11 121.02 (19)
O7—N4—C13 117.37 (18) C15—C16—H16 119.5
C14—C13—N4 121.04 (16) C11—C16—H16 119.5
C12—C13—N4 117.50 (16) N1—C10—C9 105.79 (18)
C12—C13—C14 121.45 (17) O1—C10—N1 124.88 (19)
C13—C14—N2 122.56 (16) O1—C10—C9 129.3 (2)
C15—C14—N2 119.17 (16) C20—C19—H19 125.5
C15—C14—C13 118.24 (17) C18—C19—C20 109.02 (19)
O4A—N3—C3 116.5 (7) C18—C19—H19 125.5
O3—N3—O4A 125.8 (7) C10—C9—H9 125.4
O3—N3—C3 117.4 (2) C8—C9—C10 109.3 (2)
O4B—N3—C3 121.0 (4) C8—C9—H9 125.4
O4B—N3—O3 121.4 (5) C4—C5—H5 119.7
C3—C4—N1 122.75 (18) C6—C5—C4 120.6 (2)
C5—C4—N1 119.45 (18) C6—C5—H5 119.7
C5—C4—C3 117.80 (19) C17—C18—H18 125.3
C13—C12—H12 120.2 C19—C18—C17 109.39 (19)
C11—C12—C13 119.52 (18) C19—C18—H18 125.3
C11—C12—H12 120.2 C7—C8—H8 125.5
C14—C15—H15 120.0 C9—C8—C7 108.97 (19)
C16—C15—C14 120.04 (19) C9—C8—H8 125.5
C16—C15—H15 120.0 C3—C2—H2 120.7
N2—C20—C19 106.06 (17) C1—C2—C3 118.6 (2)
O6—C20—N2 124.78 (19) C1—C2—H2 120.7
O6—C20—C19 129.16 (19) C2—C1—H1 119.7
N2—C17—C18 105.62 (17) C6—C1—C2 120.6 (2)
O5—C17—N2 125.12 (19) C6—C1—H1 119.7
O5—C17—C18 129.25 (19) C5—C6—H6 119.8
C4—C3—N3 120.01 (19) C1—C6—C5 120.4 (2)
C2—C3—N3 118.0 (2) C1—C6—H6 119.8
N2—C14—C15—C16 179.26 (18) C4—N1—C10—C9 −174.82 (18)
N2—C20—C19—C18 1.9 (3) C4—C3—C2—C1 −2.1 (3)
N2—C17—C18—C19 −1.3 (3) C4—C5—C6—C1 −1.1 (4)
O6—C20—C19—C18 −177.2 (2) C12—C13—C14—N2 −177.44 (17)
O8—N4—C13—C14 38.8 (2) C12—C13—C14—C15 0.5 (3)
O8—N4—C13—C12 −139.90 (19) C12—C11—C16—C15 0.4 (3)
N1—C4—C3—N3 0.9 (3) C20—N2—C14—C13 51.8 (3)
N1—C4—C3—C2 −179.20 (19) C20—N2—C14—C15 −126.1 (2)
N1—C4—C5—C6 −179.2 (2) C20—N2—C17—O5 −176.2 (2)
N1—C7—C8—C9 −3.9 (3) C20—N2—C17—C18 2.5 (2)
N1—C10—C9—C8 3.0 (3) C20—C19—C18—C17 −0.4 (3)
O5—C17—C18—C19 177.4 (3) C17—N2—C14—C13 −123.1 (2)
N4—C13—C14—N2 3.9 (3) C17—N2—C14—C15 59.0 (3)
N4—C13—C14—C15 −178.18 (16) C17—N2—C20—O6 176.4 (2)
N4—C13—C12—C11 176.92 (17) C17—N2—C20—C19 −2.8 (2)
O2—C7—C8—C9 174.7 (2) C3—C4—C5—C6 1.3 (3)
O7—N4—C13—C14 −142.47 (18) C3—C2—C1—C6 2.4 (4)
O7—N4—C13—C12 38.8 (2) C7—N1—C4—C3 −100.0 (2)
O1—C10—C9—C8 −174.7 (3) C7—N1—C4—C5 80.6 (3)
C13—C14—C15—C16 1.3 (3) C7—N1—C10—O1 172.4 (2)
C13—C12—C11—C16 1.3 (3) C7—N1—C10—C9 −5.5 (2)
C14—N2—C20—O6 0.9 (3) C10—N1—C4—C3 67.8 (3)
C14—N2—C20—C19 −178.29 (17) C10—N1—C4—C5 −111.6 (2)
C14—N2—C17—O5 −0.7 (3) C10—N1—C7—O2 −172.8 (2)
C14—N2—C17—C18 178.04 (18) C10—N1—C7—C8 5.9 (2)
C14—C13—C12—C11 −1.8 (3) C10—C9—C8—C7 0.5 (3)
C14—C15—C16—C11 −1.7 (3) O3—N3—C3—C4 −142.3 (2)
N3—C3—C2—C1 177.8 (2) O3—N3—C3—C2 37.8 (3)
O4A—N3—C3—C4 43.2 (9) C5—C4—C3—N3 −179.7 (2)
O4A—N3—C3—C2 −136.7 (9) C5—C4—C3—C2 0.2 (3)
C4—N1—C7—O2 −3.3 (3) C2—C1—C6—C5 −0.9 (4)
C4—N1—C7—C8 175.37 (18) O4B—N3—C3—C4 32.9 (8)
C4—N1—C10—O1 3.1 (4) O4B—N3—C3—C2 −147.0 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O7i 0.93 2.64 3.457 (3) 148
C18—H18···O5ii 0.93 2.61 3.343 (3) 136
C16—H16···O3iii 0.93 2.79 3.210 (3) 109
C15—H15···O5iv 0.93 2.68 3.455 (3) 142
C19—H19···O2v 0.93 2.61 3.362 (3) 139
C19—H19···O6vi 0.93 2.61 3.388 (3) 141
C2—H2···O1vii 0.93 2.66 3.358 (3) 133

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) −x+3/2, y+1/2, −z+1/2; (v) x+1/2, −y+1/2, z−1/2; (vi) −x+1, −y+1, −z; (vii) −x+1, −y+1, −z+1.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Ali, B., Kanda Kupa, L. D., Heluany, C. S., Drewes, C. C., Vasconcelos, S. N. S., Farsky, S. H. P. & Stefani, H. A. (2017). Bioorg. Chem. 72, 199–207. [DOI] [PubMed]
  3. Bastin, L. D., Nigam, M., Martinus, S., Maloney, J. E., Benyack, L. L. & Gainer, B. (2019). Green Chemistry Letters and Reviews, 12, 2, 127–135.
  4. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  5. Cava, M. P., Deana, A. A., Muth, K. & Mitchell, M. J. (1961). Org. Synth. 41, 93.
  6. Chai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620. [DOI] [PubMed]
  7. Chen, C. Y., Chang, P. C., Wang, T. H. & Wang, T. V. (2017). Leuk. Res. 62, 64–69. [DOI] [PubMed]
  8. Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. (1983). J. Comput. Chem. 4, 294–301.
  9. Cortes Hernandez, H. F. & Castro, M. (2016). J. Mol. Struct. 1125, 79–92.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). Gaussian 16. Revision C. 01, Gaussian, Inc., Wallingford CT, 2019.
  12. Galkin, K. I., Sandulenko, I. V. & Polezhaev, A. V. (2022). Processes, 10, 30, 1–19.
  13. García, M. M., Yepes, P. M., Sánchez, H. V. & Hernández, H. C. (2023). Heliyon. 9, e16108. [DOI] [PMC free article] [PubMed]
  14. Hargreaves, M. K., Pritchard, J. G. & Dave, H. R. (1970). Chem. Rev. 70, 439–469.
  15. Kumar, M. S. (2022). International Journal of Engineering Research & Technology (IJERT), 11, 12, 1–9.
  16. Kumar, M. S. & Jagrati, M. (2023). J. Adv. Sci. Res. 14, 02, 55–70.
  17. Lee, C. R. G. P., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [DOI] [PubMed]
  18. Mao, M., England, J. & Turner, S. (2011). Polymer, 52, 4498–4502.
  19. Mejia, G., Wang, Y., Huang, Z., Shi, Q. & Zhang, Z. (2021). Chin. J. Chem. 39, 3177–3187.
  20. Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717–o1718.
  21. Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D’Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734–o2735.
  22. Mutlaq, D. Z., Ali, A. A. A.-S. & Al-Asadi, R. H. (2021). Egypt. Pharm. J. 20, 303–312.
  23. Paprocka, R., Pazderski, L., Mazur, L., Wiese-Szadkowska, M., Kutkowska, J., Nowak, M. & Helmin-Basa, A. (2022). Molecules, 27, 2891, 1–18. [DOI] [PMC free article] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Shi, Q., Zhang, Y., Huang, Z., Zhou, N., Zhang, Z. & Zhu, X. (2020). Polym. J. 52, 21–31.
  27. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  28. Vydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 074106. [DOI] [PubMed]
  29. Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000926/vu2003sup1.cif

e-80-00256-sup1.cif (293.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000926/vu2003Isup2.hkl

e-80-00256-Isup2.hkl (362.3KB, hkl)
e-80-00256-Isup3.cml (3.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989024000926/vu2003Isup3.cml

CCDC reference: 2328386

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES