The title coordination compound was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetrahydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N′-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit.
Keywords: crystal structure, morpholine ligand, Hirshfeld surface analysis, FTIR, NMR
Abstract
The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetrahydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N′-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octahedral geometry. In the crystal, O⋯Cd interactions link the dimers into a polymeric double chain and intermolecular C—H⋯O hydrogen bonds form R 2 2(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br interactions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) interactions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts.
1. Chemical context
Inorganic–metal halides may be associated with functionalized organic molecules (for example carboxylic acids, amides or amines) to produce neutral or ionic coordination compounds that combine and change the properties of both components. Fine-tuning the stoichiometry, reaction conditions and geometry of the organic ligands allows control of the dimensionality and geometry of the final product, resulting in a wide range of systems (Constable, 2019 ▸). This has become the main focus of coordination chemistry and has allowed for the development of many research fields, such as medicinal chemistry of coordination compounds, homogenous catalysis, and metal-organic frameworks (Malinowski et al. 2020 ▸; Zecchina & Califano 2018 ▸; Yaghi et al. 2019 ▸; Jones & Thornback 2007 ▸). In this context, morpholine is a heterocyclic bidentate ligand frequently used in medicinal chemistry and a privileged structural component of bioactive molecules. The morpholine molecule has become one of the most promising moieties evaluated in structure-activity relationship (SAR) studies, as it induces biological activity, as well as an improved pharmacokinetic and metabolic profile to the biomolecules that contain it. Morpholine and its derivatives have long been known for various activities such as analgesic, anti-inflammatory, antioxidant, anticancer, anti-neurodegenerative, etc. As a result of its biological and pharmacological importance, the synthesis of morpholine compounds has been extensively studied by many researchers (Rekka & Kourounakis 2010 ▸; Wijtmans et al., 2004 ▸; Ilaš et al., 2005 ▸; Pal’chikov 2013 ▸). Herein, we report the synthesis of the coordination compound [4-(2-aminoethyl)morpholine-κ2-N,N′]dibromidocadmium(II) and examined it using single crystal X-ray diffraction, FTIR, NMR, and Hirshfeld surface studies as a part of our ongoing interest in morpholine derivatives.
2. Structural commentary
The title compound crystallizes in the triclinic P
space group. Fig. 1 ▸ depicts a perspective view of the mononuclear centrosymmetric complex, [(Cd)(L)(Br)2], where L = 4-(2-aminoethyl)morpholine, with the atom-labeling scheme. The asymmetric unit contains half of the molecule, consisting of one cadmium cation, two bromine anions and one 4-(2-aminoethyl)morpholine ligand that are located on a general positions and the other half of the molecule is generated by inversion symmetry. Although the synthesis was carried out in water, the title compound is neither a hydrate nor is water present in the coordination sphere of the metal. If water enters the coordination sphere of cadmium, the resulting complex is usually ionic, as one Br− has to stay outside the coordination sphere leading to lower entropy for the system. In addition, the large Br− ion is a better bridging ligand than water and can link the components in a three-dimensional network. Hence, ignoring water during crystallization is more advantageous than retaining it in the coordination sphere.
Figure 1.
Ellipsoid plot of the title compound with displacement ellipsoids drawn at the 50% probability level.
In the structure, one of the symmetry-independent bromine atoms (Br1) is terminal, while the other (Br2) bridges two cadmium atoms related by inversion (−x + 1, −y, −z + 1). The metal atom further coordinates the 4-(2-aminoethyl)morpholine in a N,N′ bidentate fashion, forming a five-membered chelate ring (Cd1–N1–C5–C6–N2), which is shown in Fig. 2 ▸. The last coordination site of the distorted octahedron around the cadmium atom is occupied by an oxygen atom from a different morpholine moiety (x, y − 1, z). The size of the chelate ring is a key component in metal ion selection, with five-membered chelate rings preferring metal ions with an ionic radius near 1.0 Å. Bazargan et al. (2019 ▸) reported that the optimal size for the N—M distance is 2.5 Å and the N—M—N angle is 69° for five-membered N–C–C–N–M chelate rings. In five-membered chelate rings, the M—N bond lengths and the N—M—N bond angle are considered to be inversely linked (Hancock 1992 ▸; Hancock et al., 2007 ▸; Dean et al., 2008 ▸). The Cd1—N1 and Cd1—N2 distances are 2.504 (2) and 2.306 (3) Å, respectively, while the N1—Cd—N2 angle is 76.06 (8)°. This chelate ring pattern appears to be present in all reported structures of with a metal coordinated by 4-(2-aminoethyl)morpholine (Ikmal Hisham et al., 2010 ▸; Suleiman Gwaram et al., 2011 ▸). According to the structural data for the title compound, the torsion angles O1—C1—C2—N1 and N1—C3—C4—O1 of the morpholine ring are 55.6 (3) and −61.5 (3)°, respectively. These values are comparable with those reported for similar compounds such as cis-[4-(2-aminoethyl)morpholine-κ2 N,N′]dichloridoplatinum(II) (O1—C5—C6—N2 = 55° and N1—C3—C4—O1 = −59.9°; Shi et al. 2006 ▸) and bis(acetato)bis[4-(2-aminoethyl)morpholine-κ2 N,N′]cadmium(II) tetrahydrate (O3—C1—C2—N1 = 56° and N1—C4—C3—O3 = −59.6°; Chidambaranathan et al., 2023c ▸). This validates the chair formation of morpholine rings, also observed in previously reported morpholine compounds (Konar et al., 2005 ▸; Chattopadhyay et al., 2005 ▸; Brayshaw et al., 2012 ▸; Koćwin-Giełzak & Marciniak, 2006 ▸; Chidambaranathan et al., 2023a ▸).
Figure 2.

The five-membered chelate ring present in the title compound.
3. Supramolecular features
The morpholine molecule is potentially an ambidentate N- and O-donor ligand, where the binding of morpholine to the metal center is most commonly accomplished through the nitrogen atom (Cvrtila et al., 2012 ▸; Cindric et al., 2013 ▸), except in cases where the nitrogen atom is protonated (Li et al., 2010 ▸; Willett et al., 2005 ▸). This leaves the oxygen atom free to participate in supramolecular interconnections via the formation of additional coordination bonds, acting as an acceptor for a halogen bond (Lapadula et al., 2010 ▸) or participating in hydrogen bonding (Weinberger et al., 1998 ▸), which can result in many different supramolecular architectures. A packing diagram of the title compound along the b-axis is shown in Fig. 3 ▸, showing the intermolecular C—H⋯O, C—H⋯Br and N—H⋯Br interactions (Table 1 ▸). The Br1 anion links adjacent molecules along the b-axis direction via the H3B and H4B atoms of the morpholine ring. Similarly, the Br2 anion links adjacent molecules along the a-axis direction via the H2C atom. The corresponding interaction distances for H3B⋯Br1, H4B⋯Br1 (x, y + 1, z) and H2C⋯Br1 (x − 1, y, z) are 2.96, 2.91 and 2.95 (2) Å, respectively. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Owing to the higher electronegativity of the N—H⋯Br hydrogen bonds, they are shorter than the C—H⋯Br ones and hence they will have a larger effect on the packing than the C—H⋯Br interactions. On the other hand, the O—Cd coordination bond contributes to the formation of the three-dimensional network more than the N—H⋯Br and C—H⋯Br hydrogen bonds. Fig. 4 ▸ shows the
(6) ring motif formed between two molecules through C—H⋯O intermolecular interactions (Bernstein et al., 1995 ▸; Motherwell et al., 2000 ▸).
Figure 3.
Packing diagram of the title compound along the b-axis.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1B⋯O1i | 0.97 | 2.59 | 3.370 (4) | 138 |
| C3—H3B⋯Br1 | 0.97 | 2.96 | 3.720 (3) | 137 |
| C4—H4B⋯Br1ii | 0.97 | 2.91 | 3.678 (3) | 137 |
| N2—H2C⋯Br2iii | 0.89 (2) | 2.95 (2) | 3.761 (3) | 153 (3) |
| N2—H2D⋯Br1iv | 0.87 (2) | 2.86 (2) | 3.628 (3) | 149 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 4.
The
(6) motif formed by the intermolecular interactions.
To examine the intermolecular interactions present in the title compound in more detail, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with CrystalExplorer 21.5 (Spackman et al., 2021 ▸). The three-dimensional d norm surface is shown in Fig. 5 ▸. Here the white regions relate to contacts with distances equal to the sum of the van der Waals radii, red-colored regions indicate contacts with distances shorter than the sum of the van der Waals radii, while blue areas indicate distances longer than the sum of the van der Waals radii (Venkatesan et al., 2016 ▸). This colored mapping of contacts allows the visual identification of regions susceptible to participating in interactions with other molecules. Fig. 5 ▸ shows the most prominent intermolecular interactions as red spots corresponding to the Cd—Br and Cd⋯O contacts.
Figure 5.
View of the Hirshfeld surface of the title compound mapped over d norm.
The two-dimensional fingerprint plots are shown in Fig. 6 ▸. Each point of the Hirshfeld surface is associated with two types of distances: d e is the distance from the point to the nearest-to-the-surface external nucleus and d i is the distance from the point to the nearest-to-the-surface internal nucleus. The normalized contact distance, d norm, is the sum of the van der Waals radii, d e + d i, of each atom (McKinnon et al., 2007 ▸; Hathwar et al., 2015 ▸). The largest contributions to the Hirshfeld surface are represented as a point at d e + d i ∼2.4 Å due to H⋯H (46.1%), a pair of wings with the tip at d e + d i ∼2.85 Å due to H⋯Br/Br⋯H (38.9%), a pair of spikes at d e + d i ∼2.45 Å due to H⋯O/O⋯H (4.7%), a tip of a scissor-like image at d e + d i ∼2.7 Å due to Cd⋯Br/Br⋯Cd (4.4%) and a feather-like image at d e + d i ∼2.7 Å due to O⋯Cd/Cd⋯O (3.5%) contacts. The other contributions are Br⋯Br (1.1%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%). All these interactions play a crucial role in the overall stabilization of the crystal packing.
Figure 6.
The two-dimensional fingerprint plots for the title compound showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯Br/Br⋯H, (d) H⋯O/O⋯H, (e) Cd⋯Br/Br⋯Cd and (f) O⋯Cd/Cd⋯O interactions.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016 ▸) for the keyword ‘4-(2-aminoethyl)morpholine’ yielded 21 hits for coordination compounds with metals, including trans-bis(isothiocyanato-N)bis[4-(2-aminoethyl)morpholine-κ2-N,N′]nickel(II) (NENSUU; Laskar et al., 2001 ▸), (μ2-oxalato)-bis[4-(2-aminoethyl)morpholine-κ2-N,N′]dicopper(II) (YIKQAK; Mukherjee et al., 2001 ▸), catena-[bis(μ2-dicyanamide-N,N′)-[4-(2-aminoethyl)morpholine-κ2-N,N′]nickel (II) (FIJROG; Konar et al., 2005 ▸), bis[4-(2-aminoethyl)morpholine-κ2-N,N′]copper(II) bis(tetrafluoroborate) (RAPHEW; Sander et al., 2005 ▸), [4-(2-aminoethyl)morpholine-κ2-N,N′]aqua(oxalate-O,O′)-copper(II) monohydrate (XAZRUM; Koćwin-Giełzak & Marciniak, 2006 ▸), trans-bis[4-(2-aminoethyl)morpholine-κ2-N,N′]-bis(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005 ▸; RANVEJ and NAVNAA01; Brayshaw et al., 2012 ▸), cis-dichloro[4-(2-aminoethyl)morpholine-κ2-N,N′]platinum(II) (WENQUC; Shi et al., 2006 ▸), cis-(cyclobutane-1,1-dicarboxylato)-[4-(2-aminoethyl)morpholine-κ2-N,N′]platinum(II) trihydrate (TEVSAP and TEVSAP01; Xie et al., 2007 ▸), bis(5,5-diethylbarbiturato-N)-[4-(2-aminoethyl)morpholine-κ2-N,N′]copper(II) (TUJRIA; Suat Aksoy et al., 2009 ▸), catena-[(μ4-azido-N 1,N 1,N 1,N 3)-(μ3-azido-N 1,N 1,N 1)-tris(μ2-azido-N 1,N 1,N 1)(μ2-azido-N 1,N 3)-[4-(2-aminoethyl)morpholine-κ2-N,N′]-tri-copper(II)] (IMETAW; Mukherjee & Mukherjee, 2010 ▸), tetracarbonyl-[4-(2-aminoethyl)morpholine-κ2-N,N′]molybdenum(0) diglyme solvate (CIYBIX; Kromer et al., 2014 ▸), bis[4-(2-aminoethyl)morpholine-κ2-N,N′][5,10,15,20-tetrakis(4-methoxyphenyl) porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016 ▸; NABXEW01; Khelifa et al., 2016 ▸), (1,1,1,4,4,4-hexafluoro-2,3-bis(trifluoromethyl)butane-2,3-diolato)-[4-(2-aminoethyl)morpholine-κ2-N,N′]-nitrosylcobalt (DAPKOY; Popp et al., 2021 ▸), dichlorobis[4-(2-aminoethyl)morpholine-κ2-N,N′]cadmium(II) (ULAJEX; Suleiman Gwaram et al., 2011 ▸), bis[4-(2-aminoethyl)morpholine-κ2-N,N′]diaquanickel(II) dichloride (VEPHIL; Chidambaranathan et al., 2023b ▸) and bis(acetate)-bis[4-(2-aminoethyl)morpholine-κ2-N,N′]cadmium(II) tetrahydrate (QEWKUC and FITXAL; Chidambaranathan et al., 2023c ▸). All of these structures are consolidated by hydrogen bonding. As with the other metal complexes of 4-(2-aminoethyl)morpholine, the morpholine ring adopts a chair conformation, and the amine performs as an N,N′-bidentate ligand to form a five-membered chelate ring with the metal center.
5. Synthesis and crystallization
The reaction scheme is shown in Fig. 7 ▸. Cadmium bromide tetrahydrate (3.44 g, 0.01 mol) and 4-(2-aminoethyl)morpholine (1.30 g, 0.01 mol) in a stoichiometric ratio of 1:1 were dissolved in double-distilled water at 303 K. The solvent was evaporated slowly at room temperature and plate-like orange single crystals were obtained after one week, m.p.: 497.5 K; yield: 78%; Elemental analysis for C6H14Br2CdN2O (402.41g·mol−1) theor(%): C, 17.91; H, 3.51; N, 6.96.; found(%): C, 16.98; H, 3.48; N, 6.42.
Figure 7.
Synthesis of the title compound.
The FTIR spectrum of the title compound was recorded on a Bruker FTIR spectrometer. FTIR for title compound (KBr, cm−1): 3304 (m, N—H), 2950 (w, C—H), 1598 (w, C—N), 1454 (s, C—C), 1108 (s, C—N), 612 (s, M—N); FT–IR for free ligand (Edwin et al., 2017 ▸); (KBr, cm−1): 3365 (s, N—H), 2954 (s, C—H), 1581 (m, C—N), 1456 (s, C—C), 1115 (s, C—N); 1H NMR (500 MHz. D2O, δ, ppm), 3.74 (t, 4H, –CH2—O—CH2), 2.92 (t, 4H, –CH2—N—CH2), 2.58 (broad singlet, 2H, N—CH2), 2.55 (t, 2H, –CH2—NH2).
6. Refinement details
Crystal data, data collections and structure refinement details are summarized in Table 2 ▸. All C–H atoms were positioned geometrically, C—H = 0.97 Å and refined as riding with U iso(H) = 1.2U eq(C). The acidic nitrogen-bound protons H2C and H2D were localized from electron-density maps and refined freely with distance restraints (DFIX) and with U iso(H) = 1.2U eq(N).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [CdBr2(C6H14N2O)] |
| M r | 402.41 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 299 |
| a, b, c (Å) | 7.1291 (2), 7.1662 (2), 11.0151 (3) |
| α, β, γ (°) | 77.704 (1), 80.079 (1), 72.371 (1) |
| V (Å3) | 520.49 (3) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 9.73 |
| Crystal size (mm) | 0.34 × 0.25 × 0.11 |
| Data collection | |
| Diffractometer | Bruker D8 Venture Diffractometer |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.140, 0.259 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13169, 1969, 1902 |
| R int | 0.047 |
| (sin θ/λ)max (Å−1) | 0.609 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.024, 0.059, 1.08 |
| No. of reflections | 1969 |
| No. of parameters | 116 |
| No. of restraints | 2 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.86, −0.69 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033Isup4.hkl
CCDC reference: 2298040
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors would like to thank Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for performing the data collection and structural solution and Dr M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy campus, Chennai for scientific discussions.
supplementary crystallographic information
Crystal data
| [CdBr2(C6H14N2O)] | Z = 2 |
| Mr = 402.41 | F(000) = 380 |
| Triclinic, P1 | Dx = 2.568 Mg m−3 |
| a = 7.1291 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 7.1662 (2) Å | Cell parameters from 9891 reflections |
| c = 11.0151 (3) Å | θ = 3.0–25.7° |
| α = 77.704 (1)° | µ = 9.73 mm−1 |
| β = 80.079 (1)° | T = 299 K |
| γ = 72.371 (1)° | Block, brown |
| V = 520.49 (3) Å3 | 0.34 × 0.25 × 0.11 mm |
Data collection
| Bruker D8 Venture Diffractometer | 1902 reflections with I > 2σ(I) |
| Radiation source: fine focus sealed tube | Rint = 0.047 |
| φ and ω scans | θmax = 25.7°, θmin = 3.4° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
| Tmin = 0.140, Tmax = 0.259 | k = −8→8 |
| 13169 measured reflections | l = −13→13 |
| 1969 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2615P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.059 | (Δ/σ)max = 0.001 |
| S = 1.08 | Δρmax = 0.86 e Å−3 |
| 1969 reflections | Δρmin = −0.69 e Å−3 |
| 116 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 2 restraints | Extinction coefficient: 0.0211 (13) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cd1 | 0.45454 (3) | 0.03786 (3) | 0.31347 (2) | 0.02454 (11) | |
| C1 | 0.2885 (5) | 0.5709 (4) | 0.4110 (3) | 0.0293 (6) | |
| H1A | 0.194661 | 0.659545 | 0.462766 | 0.035* | |
| H1B | 0.346397 | 0.448474 | 0.465409 | 0.035* | |
| C2 | 0.1801 (4) | 0.5262 (4) | 0.3191 (3) | 0.0260 (6) | |
| H2A | 0.083408 | 0.458664 | 0.364667 | 0.031* | |
| H2B | 0.109445 | 0.649989 | 0.271196 | 0.031* | |
| C3 | 0.4770 (5) | 0.4955 (4) | 0.1747 (3) | 0.0289 (6) | |
| H3A | 0.420658 | 0.621541 | 0.123058 | 0.035* | |
| H3B | 0.573036 | 0.411330 | 0.121325 | 0.035* | |
| C4 | 0.5793 (4) | 0.5301 (4) | 0.2727 (3) | 0.0308 (6) | |
| H4A | 0.636222 | 0.404231 | 0.324354 | 0.037* | |
| H4B | 0.686152 | 0.587572 | 0.232689 | 0.037* | |
| C5 | 0.2097 (5) | 0.3872 (4) | 0.1317 (3) | 0.0315 (6) | |
| H5A | 0.304928 | 0.335536 | 0.064300 | 0.038* | |
| H5B | 0.132830 | 0.519547 | 0.098435 | 0.038* | |
| C6 | 0.0730 (5) | 0.2558 (5) | 0.1773 (3) | 0.0336 (7) | |
| H6A | −0.019161 | 0.302997 | 0.247194 | 0.040* | |
| H6B | −0.002850 | 0.261386 | 0.110827 | 0.040* | |
| N1 | 0.3180 (3) | 0.4002 (3) | 0.2323 (2) | 0.0230 (5) | |
| N2 | 0.1879 (4) | 0.0509 (4) | 0.2164 (3) | 0.0301 (5) | |
| H2C | 0.110 (5) | −0.016 (5) | 0.266 (3) | 0.036* | |
| H2D | 0.245 (5) | −0.001 (5) | 0.150 (2) | 0.036* | |
| Br1 | 0.72268 (5) | −0.01885 (5) | 0.11392 (3) | 0.03420 (12) | |
| Br2 | 0.76499 (4) | −0.04293 (4) | 0.45383 (3) | 0.02768 (11) | |
| O1 | 0.4421 (3) | 0.6610 (3) | 0.3494 (2) | 0.0302 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cd1 | 0.02513 (15) | 0.02516 (15) | 0.02109 (14) | −0.00408 (9) | −0.00275 (9) | −0.00328 (9) |
| C1 | 0.0317 (15) | 0.0277 (14) | 0.0294 (15) | −0.0084 (12) | −0.0008 (12) | −0.0089 (12) |
| C2 | 0.0225 (14) | 0.0252 (14) | 0.0291 (15) | −0.0048 (11) | −0.0007 (11) | −0.0066 (11) |
| C3 | 0.0334 (15) | 0.0216 (14) | 0.0291 (15) | −0.0100 (12) | 0.0058 (12) | −0.0033 (11) |
| C4 | 0.0225 (14) | 0.0224 (14) | 0.0459 (19) | −0.0050 (11) | 0.0005 (12) | −0.0074 (12) |
| C5 | 0.0458 (18) | 0.0260 (14) | 0.0236 (15) | −0.0084 (13) | −0.0157 (13) | 0.0007 (11) |
| C6 | 0.0313 (16) | 0.0300 (15) | 0.0412 (18) | −0.0040 (13) | −0.0134 (13) | −0.0087 (13) |
| N1 | 0.0271 (12) | 0.0213 (11) | 0.0210 (12) | −0.0079 (9) | −0.0013 (9) | −0.0039 (9) |
| N2 | 0.0330 (14) | 0.0256 (13) | 0.0320 (14) | −0.0100 (10) | −0.0012 (11) | −0.0051 (10) |
| Br1 | 0.03434 (19) | 0.0396 (2) | 0.02838 (19) | −0.01053 (14) | 0.00469 (13) | −0.01140 (13) |
| Br2 | 0.02187 (17) | 0.03721 (19) | 0.02266 (17) | −0.00738 (12) | −0.00125 (11) | −0.00454 (12) |
| O1 | 0.0294 (11) | 0.0236 (10) | 0.0397 (12) | −0.0069 (8) | −0.0044 (9) | −0.0098 (8) |
Geometric parameters (Å, º)
| Cd1—N2 | 2.306 (3) | C3—H3A | 0.9700 |
| Cd1—N1 | 2.504 (2) | C3—H3B | 0.9700 |
| Cd1—Br1 | 2.6670 (3) | C4—O1 | 1.431 (3) |
| Cd1—Br2i | 2.7647 (3) | C4—H4A | 0.9700 |
| Cd1—Br2 | 2.7651 (3) | C4—H4B | 0.9700 |
| C1—O1 | 1.436 (4) | C5—N1 | 1.488 (4) |
| C1—C2 | 1.511 (4) | C5—C6 | 1.508 (4) |
| C1—H1A | 0.9700 | C5—H5A | 0.9700 |
| C1—H1B | 0.9700 | C5—H5B | 0.9700 |
| C2—N1 | 1.484 (3) | C6—N2 | 1.462 (4) |
| C2—H2A | 0.9700 | C6—H6A | 0.9700 |
| C2—H2B | 0.9700 | C6—H6B | 0.9700 |
| C3—N1 | 1.481 (3) | N2—H2C | 0.886 (18) |
| C3—C4 | 1.501 (4) | N2—H2D | 0.868 (18) |
| N2—Cd1—N1 | 76.06 (8) | C3—C4—H4A | 109.6 |
| N2—Cd1—Br1 | 95.75 (7) | O1—C4—H4B | 109.6 |
| N1—Cd1—Br1 | 93.36 (5) | C3—C4—H4B | 109.6 |
| N2—Cd1—Br2i | 93.03 (7) | H4A—C4—H4B | 108.1 |
| N1—Cd1—Br2i | 95.76 (5) | N1—C5—C6 | 112.6 (2) |
| Br1—Cd1—Br2i | 168.635 (14) | N1—C5—H5A | 109.1 |
| N2—Cd1—Br2 | 169.58 (6) | C6—C5—H5A | 109.1 |
| N1—Cd1—Br2 | 113.54 (5) | N1—C5—H5B | 109.1 |
| Br1—Cd1—Br2 | 87.915 (11) | C6—C5—H5B | 109.1 |
| Br2i—Cd1—Br2 | 82.231 (10) | H5A—C5—H5B | 107.8 |
| O1—C1—C2 | 112.1 (2) | N2—C6—C5 | 110.0 (3) |
| O1—C1—H1A | 109.2 | N2—C6—H6A | 109.7 |
| C2—C1—H1A | 109.2 | C5—C6—H6A | 109.7 |
| O1—C1—H1B | 109.2 | N2—C6—H6B | 109.7 |
| C2—C1—H1B | 109.2 | C5—C6—H6B | 109.7 |
| H1A—C1—H1B | 107.9 | H6A—C6—H6B | 108.2 |
| N1—C2—C1 | 111.7 (2) | C3—N1—C2 | 108.2 (2) |
| N1—C2—H2A | 109.3 | C3—N1—C5 | 108.8 (2) |
| C1—C2—H2A | 109.3 | C2—N1—C5 | 109.6 (2) |
| N1—C2—H2B | 109.3 | C3—N1—Cd1 | 111.83 (17) |
| C1—C2—H2B | 109.3 | C2—N1—Cd1 | 118.18 (17) |
| H2A—C2—H2B | 107.9 | C5—N1—Cd1 | 99.75 (16) |
| N1—C3—C4 | 111.2 (2) | C6—N2—Cd1 | 111.49 (18) |
| N1—C3—H3A | 109.4 | C6—N2—H2C | 109 (2) |
| C4—C3—H3A | 109.4 | Cd1—N2—H2C | 111 (2) |
| N1—C3—H3B | 109.4 | C6—N2—H2D | 109 (2) |
| C4—C3—H3B | 109.4 | Cd1—N2—H2D | 102 (2) |
| H3A—C3—H3B | 108.0 | H2C—N2—H2D | 114 (3) |
| O1—C4—C3 | 110.4 (2) | Cd1i—Br2—Cd1 | 97.768 (10) |
| O1—C4—H4A | 109.6 | C4—O1—C1 | 108.9 (2) |
| O1—C1—C2—N1 | 55.6 (3) | C1—C2—N1—Cd1 | 75.7 (3) |
| N1—C3—C4—O1 | −61.5 (3) | C6—C5—N1—C3 | 168.3 (2) |
| N1—C5—C6—N2 | −64.4 (3) | C6—C5—N1—C2 | −73.6 (3) |
| C4—C3—N1—C2 | 55.7 (3) | C6—C5—N1—Cd1 | 51.1 (3) |
| C4—C3—N1—C5 | 174.7 (2) | C5—C6—N2—Cd1 | 37.3 (3) |
| C4—C3—N1—Cd1 | −76.1 (2) | C3—C4—O1—C1 | 61.1 (3) |
| C1—C2—N1—C3 | −52.6 (3) | C2—C1—O1—C4 | −58.5 (3) |
| C1—C2—N1—C5 | −171.1 (2) |
Symmetry code: (i) −x+1, −y, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1B···O1ii | 0.97 | 2.59 | 3.370 (4) | 138 |
| C3—H3B···Br1 | 0.97 | 2.96 | 3.720 (3) | 137 |
| C4—H4B···Br1iii | 0.97 | 2.91 | 3.678 (3) | 137 |
| N2—H2C···Br2iv | 0.89 (2) | 2.95 (2) | 3.761 (3) | 153 (3) |
| N2—H2D···Br1v | 0.87 (2) | 2.86 (2) | 3.628 (3) | 149 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x−1, y, z; (v) −x+1, −y, −z.
References
- Bazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 48, 5476–5490. [DOI] [PubMed]
- Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97. [DOI] [PubMed]
- Bruker. (2016). APEX4, SAINT and XPREP . Bruker AXS Inc., Madison, Wisconsin, USA.
- Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681.
- Chidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023a). Acta Cryst. E79, 8–13. [DOI] [PMC free article] [PubMed]
- Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023b). Acta Cryst. E79, 226–230. [DOI] [PMC free article] [PubMed]
- Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023c). Acta Cryst. E79, 1049–1054. [DOI] [PMC free article] [PubMed]
- Cindrić, M., Pavlović, G., Hrenar, T., Uzelac, M. & Ćurić, M. (2013). Eur. J. Inorg. Chem. pp. 563–571.
- Constable, E. C. (2019). Chemistry, 1, 126–163.
- Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594.
- Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010. [DOI] [PubMed]
- Edwin, B., Amalanathan, M., Chadha, R., Maiti, N., Kapoor, S. & Hubert Joe, I. (2017). J. Mol. Struct. 1148, 459–470.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hancock, R. D. (1992). J. Chem. Educ. 69, 615–620.
- Hancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678–1689.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471. [DOI] [PMC free article] [PubMed]
- Ilaš, J., Anderluh, P. S., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325–7348.
- Jones, C. J. & Thornback, J. R. (2007). Medicinal Applications of Coordination Chemistry. The Royal Society of Chemistry.
- Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23.
- Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157.
- Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Kromer, L., Coelho, A. C., Bento, I., Marques, A. R. & Romão, C. C. (2014). J. Organomet. Chem. 760, 89–100.
- Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. A Eur. J. 16, 7400–7403. [DOI] [PubMed]
- Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082.
- Li, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000–11007. [DOI] [PubMed]
- Malinowski, J., Zych, D., Jacewicz, D., Gawdzik, B. & Drzeżdżon, J. (2020). Int. J. Mol. Sci. 21, 5443. [DOI] [PMC free article] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. [DOI] [PubMed]
- Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451–455.
- Mukherjee, S. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 10658–10667. [DOI] [PubMed]
- Pal’chikov, V. A. (2013). Russ. J. Org. Chem. 49, 787–814.
- Popp, J., Riggenmann, T., Schröder, D., Ampssler, T., Salvador, P. & Klüfers, P. (2021). Inorg. Chem. 60, 15980–15996. [DOI] [PubMed]
- Rekka, E. A. & Kourounakis, P. N. (2010). Curr. Med. Chem. 17, 3422–3430. [DOI] [PubMed]
- Sander, O., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, m824–m825.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719–m2720.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Suat Aksoy, M., Yilmaz, V. T. & Buyukgungor, O. (2009). J. Coord. Chem. 62, 3250–3258.
- Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298. [DOI] [PMC free article] [PubMed]
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
- Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126.
- Wijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, 05, 641–662.
- Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231.
- Xie, M.-J., Chen, X.-Z., Liu, W.-P., Yu, Y. & Ye, Q.-S. (2007). Acta Cryst. E63, m117–m119.
- Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry. Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim: Wiley-VCH.
- Zecchina, A. & Califano, S. (2018). MRS Bull. 43, 309–309.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033Isup4.hkl
CCDC reference: 2298040
Additional supporting information: crystallographic information; 3D view; checkCIF report






