Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 8;80(Pt 3):271–276. doi: 10.1107/S2056989024000963

[4-(2-Aminoethyl)morpholine-κ2 N,N′]di­bromidocadmium(II): synthesis, crystal structure and Hirshfeld surface analysis

B Chidambaranathan a, S Sivaraj a, P Vijayamathubalan a, S Abraham Rajasekar b, S Selvakumar a,*
Editor: V Jancikc
PMCID: PMC10915673  PMID: 38456053

The title coordination compound was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetra­hydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N′-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit.

Keywords: crystal structure, morpholine ligand, Hirshfeld surface analysis, FTIR, NMR

Abstract

The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetra­hydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N′-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octa­hedral geometry. In the crystal, O⋯Cd inter­actions link the dimers into a polymeric double chain and inter­molecular C—H⋯O hydrogen bonds form R 2 2(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br inter­actions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) inter­actions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts.

1. Chemical context

Inorganic–metal halides may be associated with functionalized organic mol­ecules (for example carb­oxy­lic acids, amides or amines) to produce neutral or ionic coordination compounds that combine and change the properties of both components. Fine-tuning the stoichiometry, reaction conditions and geometry of the organic ligands allows control of the dimensionality and geometry of the final product, resulting in a wide range of systems (Constable, 2019). This has become the main focus of coordination chemistry and has allowed for the development of many research fields, such as medicinal chemistry of coordination compounds, homogenous catalysis, and metal-organic frameworks (Malinowski et al. 2020; Zecchina & Califano 2018; Yaghi et al. 2019; Jones & Thornback 2007). In this context, morpholine is a heterocyclic bidentate ligand frequently used in medicinal chemistry and a privileged structural component of bioactive mol­ecules. The morpholine mol­ecule has become one of the most promising moieties evaluated in structure-activity relationship (SAR) studies, as it induces biological activity, as well as an improved pharmacokinetic and metabolic profile to the biomolecules that contain it. Morpholine and its derivatives have long been known for various activities such as analgesic, anti-inflammatory, anti­oxidant, anti­cancer, anti-neurodegenerative, etc. As a result of its biological and pharmacological importance, the synthesis of morpholine compounds has been extensively studied by many researchers (Rekka & Kourounakis 2010; Wijtmans et al., 2004; Ilaš et al., 2005; Pal’chikov 2013). Herein, we report the synthesis of the coordination compound [4-(2-aminoethyl)morpholine-κ2-N,N′]di­bromidocadmium(II) and examined it using single crystal X-ray diffraction, FTIR, NMR, and Hirshfeld surface studies as a part of our ongoing inter­est in morpholine derivatives. 1.

2. Structural commentary

The title compound crystallizes in the triclinic P Inline graphic space group. Fig. 1 depicts a perspective view of the mononuclear centrosymmetric complex, [(Cd)(L)(Br)2], where L = 4-(2-aminoethyl)morpholine, with the atom-labeling scheme. The asymmetric unit contains half of the mol­ecule, consisting of one cadmium cation, two bromine anions and one 4-(2-aminoethyl)morpholine ligand that are located on a general positions and the other half of the mol­ecule is generated by inversion symmetry. Although the synthesis was carried out in water, the title compound is neither a hydrate nor is water present in the coordination sphere of the metal. If water enters the coordination sphere of cadmium, the resulting complex is usually ionic, as one Br has to stay outside the coordination sphere leading to lower entropy for the system. In addition, the large Br ion is a better bridging ligand than water and can link the components in a three-dimensional network. Hence, ignoring water during crystallization is more advantageous than retaining it in the coordination sphere.

Figure 1.

Figure 1

Ellipsoid plot of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the structure, one of the symmetry-independent bromine atoms (Br1) is terminal, while the other (Br2) bridges two cadmium atoms related by inversion (−x + 1, −y, −z + 1). The metal atom further coordinates the 4-(2-aminoethyl)morpholine in a N,N′ bidentate fashion, forming a five-membered chelate ring (Cd1–N1–C5–C6–N2), which is shown in Fig. 2. The last coordination site of the distorted octa­hedron around the cadmium atom is occupied by an oxygen atom from a different morpholine moiety (x, y − 1, z). The size of the chelate ring is a key component in metal ion selection, with five-membered chelate rings preferring metal ions with an ionic radius near 1.0 Å. Baza­rgan et al. (2019) reported that the optimal size for the N—M distance is 2.5 Å and the N—M—N angle is 69° for five-membered N–C–C–N–M chelate rings. In five-membered chelate rings, the M—N bond lengths and the N—M—N bond angle are considered to be inversely linked (Hancock 1992; Hancock et al., 2007; Dean et al., 2008). The Cd1—N1 and Cd1—N2 distances are 2.504 (2) and 2.306 (3) Å, respectively, while the N1—Cd—N2 angle is 76.06 (8)°. This chelate ring pattern appears to be present in all reported structures of with a metal coordinated by 4-(2-aminoethyl)morpholine (Ikmal Hisham et al., 2010; Suleiman Gwaram et al., 2011). According to the structural data for the title compound, the torsion angles O1—C1—C2—N1 and N1—C3—C4—O1 of the morpholine ring are 55.6 (3) and −61.5 (3)°, respectively. These values are comparable with those reported for similar compounds such as cis-[4-(2-aminoethyl)morpholine-κ2 N,N′]di­chlorido­plati­num(II) (O1—C5—C6—N2 = 55° and N1—C3—C4—O1 = −59.9°; Shi et al. 2006) and bis­(acetato)­bis­[4-(2-aminoethyl)morpholine-κ2 N,N′]cadmium(II) tetra­hydrate (O3—C1—C2—N1 = 56° and N1—C4—C3—O3 = −59.6°; Chidambaranathan et al., 2023c ). This validates the chair formation of morpholine rings, also observed in previously reported morpholine compounds (Konar et al., 2005; Chattopadhyay et al., 2005; Brayshaw et al., 2012; Koćwin-Giełzak & Marciniak, 2006; Chidambaranathan et al., 2023a ).

Figure 2.

Figure 2

The five-membered chelate ring present in the title compound.

3. Supra­molecular features

The morpholine mol­ecule is potentially an ambidentate N- and O-donor ligand, where the binding of morpholine to the metal center is most commonly accomplished through the nitro­gen atom (Cvrtila et al., 2012; Cindric et al., 2013), except in cases where the nitro­gen atom is protonated (Li et al., 2010; Willett et al., 2005). This leaves the oxygen atom free to participate in supra­molecular inter­connections via the formation of additional coordination bonds, acting as an acceptor for a halogen bond (Lapadula et al., 2010) or participating in hydrogen bonding (Weinberger et al., 1998), which can result in many different supra­molecular architectures. A packing diagram of the title compound along the b-axis is shown in Fig. 3, showing the inter­molecular C—H⋯O, C—H⋯Br and N—H⋯Br inter­actions (Table 1). The Br1 anion links adjacent mol­ecules along the b-axis direction via the H3B and H4B atoms of the morpholine ring. Similarly, the Br2 anion links adjacent mol­ecules along the a-axis direction via the H2C atom. The corresponding inter­action distances for H3B⋯Br1, H4B⋯Br1 (x, y + 1, z) and H2C⋯Br1 (x − 1, y, z) are 2.96, 2.91 and 2.95 (2) Å, respectively. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Owing to the higher electronegativity of the N—H⋯Br hydrogen bonds, they are shorter than the C—H⋯Br ones and hence they will have a larger effect on the packing than the C—H⋯Br inter­actions. On the other hand, the O—Cd coordination bond contributes to the formation of the three-dimensional network more than the N—H⋯Br and C—H⋯Br hydrogen bonds. Fig. 4 shows the Inline graphic (6) ring motif formed between two mol­ecules through C—H⋯O inter­molecular inter­actions (Bernstein et al., 1995; Motherwell et al., 2000).

Figure 3.

Figure 3

Packing diagram of the title compound along the b-axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.97 2.59 3.370 (4) 138
C3—H3B⋯Br1 0.97 2.96 3.720 (3) 137
C4—H4B⋯Br1ii 0.97 2.91 3.678 (3) 137
N2—H2C⋯Br2iii 0.89 (2) 2.95 (2) 3.761 (3) 153 (3)
N2—H2D⋯Br1iv 0.87 (2) 2.86 (2) 3.628 (3) 149 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 4.

Figure 4

The Inline graphic (6) motif formed by the inter­molecular inter­actions.

To examine the inter­molecular inter­actions present in the title compound in more detail, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with CrystalExplorer 21.5 (Spackman et al., 2021). The three-dimensional d norm surface is shown in Fig. 5. Here the white regions relate to contacts with distances equal to the sum of the van der Waals radii, red-colored regions indicate contacts with distances shorter than the sum of the van der Waals radii, while blue areas indicate distances longer than the sum of the van der Waals radii (Venkatesan et al., 2016). This colored mapping of contacts allows the visual identification of regions susceptible to participating in inter­actions with other mol­ecules. Fig. 5 shows the most prominent inter­molecular inter­actions as red spots corresponding to the Cd—Br and Cd⋯O contacts.

Figure 5.

Figure 5

View of the Hirshfeld surface of the title compound mapped over d norm.

The two-dimensional fingerprint plots are shown in Fig. 6. Each point of the Hirshfeld surface is associated with two types of distances: d e is the distance from the point to the nearest-to-the-surface external nucleus and d i is the distance from the point to the nearest-to-the-surface inter­nal nucleus. The normalized contact distance, d norm, is the sum of the van der Waals radii, d e + d i, of each atom (McKinnon et al., 2007; Hathwar et al., 2015). The largest contributions to the Hirshfeld surface are represented as a point at d e + d i ∼2.4 Å due to H⋯H (46.1%), a pair of wings with the tip at d e + d i ∼2.85 Å due to H⋯Br/Br⋯H (38.9%), a pair of spikes at d e + d i ∼2.45 Å due to H⋯O/O⋯H (4.7%), a tip of a scissor-like image at d e + d i ∼2.7 Å due to Cd⋯Br/Br⋯Cd (4.4%) and a feather-like image at d e + d i ∼2.7 Å due to O⋯Cd/Cd⋯O (3.5%) contacts. The other contributions are Br⋯Br (1.1%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%). All these inter­actions play a crucial role in the overall stabilization of the crystal packing.

Figure 6.

Figure 6

The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯Br/Br⋯H, (d) H⋯O/O⋯H, (e) Cd⋯Br/Br⋯Cd and (f) O⋯Cd/Cd⋯O inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016) for the keyword ‘4-(2-amino­eth­yl)morpholine’ yielded 21 hits for coordination compounds with metals, including trans-bis­(iso­thio­cyanato-N)bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]nickel(II) (NENSUU; Laskar et al., 2001), (μ2-oxalato)-bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]dicopper(II) (YIKQAK; Mukherjee et al., 2001), catena-[bis­(μ2-dicyanamide-N,N′)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]nickel (II) (FIJROG; Konar et al., 2005), bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]copper(II) bis­(tetra­fluoro­borate) (RAPHEW; Sander et al., 2005), [4-(2-amino­eth­yl)morpholine-κ2-N,N′]aqua­(oxalate-O,O′)-copper(II) monohydrate (XAZRUM; Koćwin-Giełzak & Marciniak, 2006), trans-bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]-bis­(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005; RANVEJ and NAVNAA01; Brayshaw et al., 2012), cis-di­chloro­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]platinum(II) (WENQUC; Shi et al., 2006), cis-(cyclo­butane-1,1-di­carboxyl­ato)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]platinum(II) trihydrate (TEVSAP and TEVSAP01; Xie et al., 2007), bis­(5,5-di­ethyl­barbiturato-N)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]cop­per(II) (TUJRIA; Suat Aksoy et al., 2009), catena-[(μ4-azido-N 1,N 1,N 1,N 3)-(μ3-azido-N 1,N 1,N 1)-tris­(μ2-azido-N 1,N 1,N 1)(μ2-azido-N 1,N 3)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]-tri-copper(II)] (IMETAW; Mukherjee & Mukherjee, 2010), tetra­carbonyl-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]molybdenum(0) diglyme solvate (CIYBIX; Kromer et al., 2014), bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′][5,10,15,20-tetra­kis(4-meth­oxy­phen­yl) porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016; NABXEW01; Khelifa et al., 2016), (1,1,1,4,4,4-hexa­fluoro-2,3-bis­(tri­fluoro­meth­yl)butane-2,3-dio­lato)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]-nitro­sylcobalt (DAPKOY; Popp et al., 2021), di­chloro­bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]cadmium(II) (ULAJEX; Suleiman Gwaram et al., 2011), bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]di­aqua­nickel(II) dichloride (VEPHIL; Chidambaranathan et al., 2023b ) and bis­(acetate)-bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]cadmium(II) tetra­hydrate (QEWKUC and FITXAL; Chidambaranathan et al., 2023c ). All of these structures are consolidated by hydrogen bonding. As with the other metal complexes of 4-(2-amino­eth­yl)morpholine, the morpholine ring adopts a chair conformation, and the amine performs as an N,N′-bidentate ligand to form a five-membered chelate ring with the metal center.

5. Synthesis and crystallization

The reaction scheme is shown in Fig. 7. Cadmium bromide tetra­hydrate (3.44 g, 0.01 mol) and 4-(2-aminoethyl)morpholine (1.30 g, 0.01 mol) in a stoichiometric ratio of 1:1 were dissolved in double-distilled water at 303 K. The solvent was evaporated slowly at room temperature and plate-like orange single crystals were obtained after one week, m.p.: 497.5 K; yield: 78%; Elemental analysis for C6H14Br2CdN2O (402.41g·mol−1) theor(%): C, 17.91; H, 3.51; N, 6.96.; found(%): C, 16.98; H, 3.48; N, 6.42.

Figure 7.

Figure 7

Synthesis of the title compound.

The FTIR spectrum of the title compound was recorded on a Bruker FTIR spectrometer. FTIR for title compound (KBr, cm−1): 3304 (m, N—H), 2950 (w, C—H), 1598 (w, C—N), 1454 (s, C—C), 1108 (s, C—N), 612 (s, M—N); FT–IR for free ligand (Edwin et al., 2017); (KBr, cm−1): 3365 (s, N—H), 2954 (s, C—H), 1581 (m, C—N), 1456 (s, C—C), 1115 (s, C—N); 1H NMR (500 MHz. D2O, δ, ppm), 3.74 (t, 4H, –CH2—O—CH2), 2.92 (t, 4H, –CH2—N—CH2), 2.58 (broad singlet, 2H, N—CH2), 2.55 (t, 2H, –CH2—NH2).

6. Refinement details

Crystal data, data collections and structure refinement details are summarized in Table 2. All C–H atoms were positioned geometrically, C—H = 0.97 Å and refined as riding with U iso(H) = 1.2U eq(C). The acidic nitro­gen-bound protons H2C and H2D were localized from electron-density maps and refined freely with distance restraints (DFIX) and with U iso(H) = 1.2U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula [CdBr2(C6H14N2O)]
M r 402.41
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 299
a, b, c (Å) 7.1291 (2), 7.1662 (2), 11.0151 (3)
α, β, γ (°) 77.704 (1), 80.079 (1), 72.371 (1)
V3) 520.49 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.73
Crystal size (mm) 0.34 × 0.25 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.140, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 13169, 1969, 1902
R int 0.047
(sin θ/λ)max−1) 0.609
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.059, 1.08
No. of reflections 1969
No. of parameters 116
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.69

Computer programs: APEX4, SAINT and XPREP (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2019/2 (Sheldrick, 2015b ) and WinGX publication routines and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033sup1.cif

e-80-00271-sup1.cif (393.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033Isup4.hkl

e-80-00271-Isup4.hkl (158.1KB, hkl)

CCDC reference: 2298040

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for performing the data collection and structural solution and Dr M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy campus, Chennai for scientific discussions.

supplementary crystallographic information

Crystal data

[CdBr2(C6H14N2O)] Z = 2
Mr = 402.41 F(000) = 380
Triclinic, P1 Dx = 2.568 Mg m3
a = 7.1291 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.1662 (2) Å Cell parameters from 9891 reflections
c = 11.0151 (3) Å θ = 3.0–25.7°
α = 77.704 (1)° µ = 9.73 mm1
β = 80.079 (1)° T = 299 K
γ = 72.371 (1)° Block, brown
V = 520.49 (3) Å3 0.34 × 0.25 × 0.11 mm

Data collection

Bruker D8 Venture Diffractometer 1902 reflections with I > 2σ(I)
Radiation source: fine focus sealed tube Rint = 0.047
φ and ω scans θmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −8→8
Tmin = 0.140, Tmax = 0.259 k = −8→8
13169 measured reflections l = −13→13
1969 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2615P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.86 e Å3
1969 reflections Δρmin = −0.69 e Å3
116 parameters Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0211 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.45454 (3) 0.03786 (3) 0.31347 (2) 0.02454 (11)
C1 0.2885 (5) 0.5709 (4) 0.4110 (3) 0.0293 (6)
H1A 0.194661 0.659545 0.462766 0.035*
H1B 0.346397 0.448474 0.465409 0.035*
C2 0.1801 (4) 0.5262 (4) 0.3191 (3) 0.0260 (6)
H2A 0.083408 0.458664 0.364667 0.031*
H2B 0.109445 0.649989 0.271196 0.031*
C3 0.4770 (5) 0.4955 (4) 0.1747 (3) 0.0289 (6)
H3A 0.420658 0.621541 0.123058 0.035*
H3B 0.573036 0.411330 0.121325 0.035*
C4 0.5793 (4) 0.5301 (4) 0.2727 (3) 0.0308 (6)
H4A 0.636222 0.404231 0.324354 0.037*
H4B 0.686152 0.587572 0.232689 0.037*
C5 0.2097 (5) 0.3872 (4) 0.1317 (3) 0.0315 (6)
H5A 0.304928 0.335536 0.064300 0.038*
H5B 0.132830 0.519547 0.098435 0.038*
C6 0.0730 (5) 0.2558 (5) 0.1773 (3) 0.0336 (7)
H6A −0.019161 0.302997 0.247194 0.040*
H6B −0.002850 0.261386 0.110827 0.040*
N1 0.3180 (3) 0.4002 (3) 0.2323 (2) 0.0230 (5)
N2 0.1879 (4) 0.0509 (4) 0.2164 (3) 0.0301 (5)
H2C 0.110 (5) −0.016 (5) 0.266 (3) 0.036*
H2D 0.245 (5) −0.001 (5) 0.150 (2) 0.036*
Br1 0.72268 (5) −0.01885 (5) 0.11392 (3) 0.03420 (12)
Br2 0.76499 (4) −0.04293 (4) 0.45383 (3) 0.02768 (11)
O1 0.4421 (3) 0.6610 (3) 0.3494 (2) 0.0302 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02513 (15) 0.02516 (15) 0.02109 (14) −0.00408 (9) −0.00275 (9) −0.00328 (9)
C1 0.0317 (15) 0.0277 (14) 0.0294 (15) −0.0084 (12) −0.0008 (12) −0.0089 (12)
C2 0.0225 (14) 0.0252 (14) 0.0291 (15) −0.0048 (11) −0.0007 (11) −0.0066 (11)
C3 0.0334 (15) 0.0216 (14) 0.0291 (15) −0.0100 (12) 0.0058 (12) −0.0033 (11)
C4 0.0225 (14) 0.0224 (14) 0.0459 (19) −0.0050 (11) 0.0005 (12) −0.0074 (12)
C5 0.0458 (18) 0.0260 (14) 0.0236 (15) −0.0084 (13) −0.0157 (13) 0.0007 (11)
C6 0.0313 (16) 0.0300 (15) 0.0412 (18) −0.0040 (13) −0.0134 (13) −0.0087 (13)
N1 0.0271 (12) 0.0213 (11) 0.0210 (12) −0.0079 (9) −0.0013 (9) −0.0039 (9)
N2 0.0330 (14) 0.0256 (13) 0.0320 (14) −0.0100 (10) −0.0012 (11) −0.0051 (10)
Br1 0.03434 (19) 0.0396 (2) 0.02838 (19) −0.01053 (14) 0.00469 (13) −0.01140 (13)
Br2 0.02187 (17) 0.03721 (19) 0.02266 (17) −0.00738 (12) −0.00125 (11) −0.00454 (12)
O1 0.0294 (11) 0.0236 (10) 0.0397 (12) −0.0069 (8) −0.0044 (9) −0.0098 (8)

Geometric parameters (Å, º)

Cd1—N2 2.306 (3) C3—H3A 0.9700
Cd1—N1 2.504 (2) C3—H3B 0.9700
Cd1—Br1 2.6670 (3) C4—O1 1.431 (3)
Cd1—Br2i 2.7647 (3) C4—H4A 0.9700
Cd1—Br2 2.7651 (3) C4—H4B 0.9700
C1—O1 1.436 (4) C5—N1 1.488 (4)
C1—C2 1.511 (4) C5—C6 1.508 (4)
C1—H1A 0.9700 C5—H5A 0.9700
C1—H1B 0.9700 C5—H5B 0.9700
C2—N1 1.484 (3) C6—N2 1.462 (4)
C2—H2A 0.9700 C6—H6A 0.9700
C2—H2B 0.9700 C6—H6B 0.9700
C3—N1 1.481 (3) N2—H2C 0.886 (18)
C3—C4 1.501 (4) N2—H2D 0.868 (18)
N2—Cd1—N1 76.06 (8) C3—C4—H4A 109.6
N2—Cd1—Br1 95.75 (7) O1—C4—H4B 109.6
N1—Cd1—Br1 93.36 (5) C3—C4—H4B 109.6
N2—Cd1—Br2i 93.03 (7) H4A—C4—H4B 108.1
N1—Cd1—Br2i 95.76 (5) N1—C5—C6 112.6 (2)
Br1—Cd1—Br2i 168.635 (14) N1—C5—H5A 109.1
N2—Cd1—Br2 169.58 (6) C6—C5—H5A 109.1
N1—Cd1—Br2 113.54 (5) N1—C5—H5B 109.1
Br1—Cd1—Br2 87.915 (11) C6—C5—H5B 109.1
Br2i—Cd1—Br2 82.231 (10) H5A—C5—H5B 107.8
O1—C1—C2 112.1 (2) N2—C6—C5 110.0 (3)
O1—C1—H1A 109.2 N2—C6—H6A 109.7
C2—C1—H1A 109.2 C5—C6—H6A 109.7
O1—C1—H1B 109.2 N2—C6—H6B 109.7
C2—C1—H1B 109.2 C5—C6—H6B 109.7
H1A—C1—H1B 107.9 H6A—C6—H6B 108.2
N1—C2—C1 111.7 (2) C3—N1—C2 108.2 (2)
N1—C2—H2A 109.3 C3—N1—C5 108.8 (2)
C1—C2—H2A 109.3 C2—N1—C5 109.6 (2)
N1—C2—H2B 109.3 C3—N1—Cd1 111.83 (17)
C1—C2—H2B 109.3 C2—N1—Cd1 118.18 (17)
H2A—C2—H2B 107.9 C5—N1—Cd1 99.75 (16)
N1—C3—C4 111.2 (2) C6—N2—Cd1 111.49 (18)
N1—C3—H3A 109.4 C6—N2—H2C 109 (2)
C4—C3—H3A 109.4 Cd1—N2—H2C 111 (2)
N1—C3—H3B 109.4 C6—N2—H2D 109 (2)
C4—C3—H3B 109.4 Cd1—N2—H2D 102 (2)
H3A—C3—H3B 108.0 H2C—N2—H2D 114 (3)
O1—C4—C3 110.4 (2) Cd1i—Br2—Cd1 97.768 (10)
O1—C4—H4A 109.6 C4—O1—C1 108.9 (2)
O1—C1—C2—N1 55.6 (3) C1—C2—N1—Cd1 75.7 (3)
N1—C3—C4—O1 −61.5 (3) C6—C5—N1—C3 168.3 (2)
N1—C5—C6—N2 −64.4 (3) C6—C5—N1—C2 −73.6 (3)
C4—C3—N1—C2 55.7 (3) C6—C5—N1—Cd1 51.1 (3)
C4—C3—N1—C5 174.7 (2) C5—C6—N2—Cd1 37.3 (3)
C4—C3—N1—Cd1 −76.1 (2) C3—C4—O1—C1 61.1 (3)
C1—C2—N1—C3 −52.6 (3) C2—C1—O1—C4 −58.5 (3)
C1—C2—N1—C5 −171.1 (2)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O1ii 0.97 2.59 3.370 (4) 138
C3—H3B···Br1 0.97 2.96 3.720 (3) 137
C4—H4B···Br1iii 0.97 2.91 3.678 (3) 137
N2—H2C···Br2iv 0.89 (2) 2.95 (2) 3.761 (3) 153 (3)
N2—H2D···Br1v 0.87 (2) 2.86 (2) 3.628 (3) 149 (3)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x−1, y, z; (v) −x+1, −y, −z.

References

  1. Bazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 48, 5476–5490. [DOI] [PubMed]
  2. Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97. [DOI] [PubMed]
  5. Bruker. (2016). APEX4, SAINT and XPREP . Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681.
  7. Chidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023a). Acta Cryst. E79, 8–13. [DOI] [PMC free article] [PubMed]
  8. Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023b). Acta Cryst. E79, 226–230. [DOI] [PMC free article] [PubMed]
  9. Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023c). Acta Cryst. E79, 1049–1054. [DOI] [PMC free article] [PubMed]
  10. Cindrić, M., Pavlović, G., Hrenar, T., Uzelac, M. & Ćurić, M. (2013). Eur. J. Inorg. Chem. pp. 563–571.
  11. Constable, E. C. (2019). Chemistry, 1, 126–163.
  12. Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594.
  13. Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010. [DOI] [PubMed]
  14. Edwin, B., Amalanathan, M., Chadha, R., Maiti, N., Kapoor, S. & Hubert Joe, I. (2017). J. Mol. Struct. 1148, 459–470.
  15. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Hancock, R. D. (1992). J. Chem. Educ. 69, 615–620.
  18. Hancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678–1689.
  19. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  20. Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471. [DOI] [PMC free article] [PubMed]
  21. Ilaš, J., Anderluh, P. S., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325–7348.
  22. Jones, C. J. & Thornback, J. R. (2007). Medicinal Applications of Coordination Chemistry. The Royal Society of Chemistry.
  23. Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23.
  24. Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157.
  25. Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963.
  26. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  27. Kromer, L., Coelho, A. C., Bento, I., Marques, A. R. & Romão, C. C. (2014). J. Organomet. Chem. 760, 89–100.
  28. Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. A Eur. J. 16, 7400–7403. [DOI] [PubMed]
  29. Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082.
  30. Li, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000–11007. [DOI] [PubMed]
  31. Malinowski, J., Zych, D., Jacewicz, D., Gawdzik, B. & Drzeżdżon, J. (2020). Int. J. Mol. Sci. 21, 5443. [DOI] [PMC free article] [PubMed]
  32. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  33. Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. [DOI] [PubMed]
  34. Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451–455.
  35. Mukherjee, S. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 10658–10667. [DOI] [PubMed]
  36. Pal’chikov, V. A. (2013). Russ. J. Org. Chem. 49, 787–814.
  37. Popp, J., Riggenmann, T., Schröder, D., Ampssler, T., Salvador, P. & Klüfers, P. (2021). Inorg. Chem. 60, 15980–15996. [DOI] [PubMed]
  38. Rekka, E. A. & Kourounakis, P. N. (2010). Curr. Med. Chem. 17, 3422–3430. [DOI] [PubMed]
  39. Sander, O., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, m824–m825.
  40. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  41. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  42. Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719–m2720.
  43. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  44. Suat Aksoy, M., Yilmaz, V. T. & Buyukgungor, O. (2009). J. Coord. Chem. 62, 3250–3258.
  45. Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298. [DOI] [PMC free article] [PubMed]
  46. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  47. Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126.
  48. Wijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, 05, 641–662.
  49. Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231.
  50. Xie, M.-J., Chen, X.-Z., Liu, W.-P., Yu, Y. & Ye, Q.-S. (2007). Acta Cryst. E63, m117–m119.
  51. Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry. Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim: Wiley-VCH.
  52. Zecchina, A. & Califano, S. (2018). MRS Bull. 43, 309–309.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033sup1.cif

e-80-00271-sup1.cif (393.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000963/jq2033Isup4.hkl

e-80-00271-Isup4.hkl (158.1KB, hkl)

CCDC reference: 2298040

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES