Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 2;80(Pt 3):262–266. doi: 10.1107/S2056989024001002

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

Riham Sghyar a, Abdeslem Bentama a, Amal Haoudi a, Ahmed Mazzah b, Joel T Mague c, Tuncer Hökelek d, El Mestafa EL Hadrami a, Nada Kheira Sebbar e,f,*
Editor: Y Ozawag
PMCID: PMC10915674  PMID: 38456046

The mol­ecule of the title compound is twisted end to end so that the ferrocenyl groups are nearly perpendicular to one another. The central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers parallel to (010), which are connected by further C—H⋯π(ring) inter­actions.

Keywords: crystal structure, ferrocene, carbamidic chloride, hydrogen bond, C—H⋯π(ring) inter­actions

Abstract

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.

1. Chemical context

Organometallic compounds have been studied for almost 250 years and have proved to be bioactive mol­ecules with a wide range of applications (Krause et al., 2012; Parveen et al., 2019; Li et al., 2008). They are characterized by their metal–carbon covalent bonds as well as their kinetic stability, non-chargeability, lipophilicity, and low metal oxidation states (Herrmann, 1988; Alama et al., 2009). A number of organometallic compounds are useful starting reagents for organic and organometallic synthesis. Metallocenes are an important and well-known class of organometallic compounds that offer new possibilities in the design of catalytic, biosensing, and medicinal compounds (Gasser et al., 2011; Gasser & Metzler-Nolte, 2012; Ong & Gasser, 2020). Their chemical richness is caused by the variation in electron density in the valence shell. Ferrocene, one of the most prominent metallocene derivatives, is a fascinating target in a variety of fields, including electrochemistry, biochemistry, and drug design (Togni, 1996; Tsukazaki et al., 1996; Nishibayashi et al., 1996) and mediators of protein redox reactions (Dai et al., 2007). Due to the chemical richness of the iron(II) center, its stability in aqueous and aerobic environments and its aromatic properties, ferrocene has attracted considerable inter­est (Ibrahim, 2001). In addition to possessing a wide range of derivatives, these compounds are easily oxidized. Ferrocene derivatives have been reported to have anti­tumor, anti­malarial, anti­convulsant, anti­oxidant, anti­microbial and DNA-cleaving activities among their biological activities, and have attracted particular attention as anti­tumor and anti­malarial agents including the drugs tamoxifen, ferroquine and ferrocifen (Top et al., 2003). These drugs are excellent preventive agents against cancer and malaria, and their biological uses have been the subject of much research. The derivatization of ferrocene has been extensively studied (Rehmani et al., 2010). Amines, carbonyls and carb­oxy­lic acid functionalities can be introduced to derivatize ferrocene (Langeroodi, 2010). Ferrocenyl aniline can be synthesized by reducing nitro­phenyl ferrocene. There is an inter­mediary in the synthesis of ferrocene-containing liquid crystals, ferrocene-containing Schiff bases. In our research on the development of new substituted ferrocenyl derivatives, we synthesized N,N-bis­(4-ferrocenylphen­yl)carbamimidic dichloride by reacting 4-ferrocenyl aniline with (4-ferrocenylphen­yl)carbonimidic dichloride with potassium carbonate as a base and tetra­butyl­ammonium bromide as a catalyst. In this paper, we present the synthesis and detailed examination of the mol­ecular and crystal structures of the title compound, including by Hirshfeld surface analysis. 1.

2. Structural commentary

In the crystal, the mol­ecule is disordered in essentially equal amounts such that a hydrogen atom appears on both N1 and N2 and the C17—N1 and C17—N2 distances appear equivalent at 1.365 (3) and 1.366 (3) Å, respectively. The ferrocenyl groups are nearly perpendicular to one another as indicated by the dihedral angle of 82.05 (9)° between the C1–C5 and C29–C33 cyclo­penta­dienyl rings. The cyclo­penta­dienyl rings attached to Fe1 are parallel within experimental error [dihedral angle = 0.14 (18)°] while those attached to Fe2 are not [dihedral angle = 2.03 (19)°]. The mol­ecule is twisted along its length (Fig. 1), as indicated by the dihedral angles listed in Table 1. The smaller values for the last two entries in the table are due, in part, to the intra­molecular C23—H23⋯Cl1 hydrogen bond (Table 2). With the exception of the two C—N distances affected by the disorder, all bond distances and inter­bond angles appear as expected for the given formulation.

Figure 1.

Figure 1

The title mol­ecule with the labeling scheme and 50% probability ellipsoids. Only one component of the disordered N—H group is shown. The C—H⋯Cl and N—H⋯O hydrogen bonds are depicted, respectively, by black and violet dashed lines.

Table 1. Dihedral angles (°) between planes.

Planes Dihedral angle
C6–C10 vs C11–C16 23.37 (12)
C11–C16 vs N1/C17/N2/C11 45.39 (7)
N1/C17/N2/C11 vs C18–C23 9.09 (13)
C18–C23 vs C24–C28 9.08 (15)

Table 2. Hydrogen-bond geometry (Å, °).

Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.91 (1) 1.98 (2) 2.862 (3) 163 (5)
C7—H7⋯Cg6i 1.00 2.63 3.569 (3) 157
C19—H19⋯Cg5ii 0.95 2.63 3.286 (3) 126
C23—H23⋯Cl1 0.95 2.55 3.219 (2) 127
C25—H25⋯Cg2ii 1.00 2.94 3.913 (3) 163
C34—H34⋯Cg5i 0.95 2.71 3.632 (3) 164
C35—H35CCg4iii 0.98 2.97 3.624 (3) 125

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

3. Supra­molecular features

In the crystal, the DMF solvent mol­ecule is bound to the main mol­ecule by an N1—H1⋯O1 hydrogen bond and these units are formed into corrugated layers parallel to (010) by C7—H7⋯Cg6, C19—H19⋯Cg5, C25—H25⋯Cg2 and C34—H34⋯Cg5 inter­actions, while the layers are connected by C35—H35CCg4 inter­actions (Table 2 and Fig. 2) where Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.

Figure 2.

Figure 2

Packing viewed along the b-axis direction with N—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by violet and blue dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colors indicate distances shorter (in close contact) or longer (distinct contact) than the sum of van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate the respective donors (C14) and/or acceptors (H5 and H19). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 4 clearly suggests that there are no π–π inter­actions present.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm.

Figure 4.

Figure 4

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot is shown in Fig. 5 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯N/ N⋯H, H⋯O/O⋯H, C⋯C, C⋯O/O⋯C and N⋯O/O⋯N (McKinnon et al., 2007) are illustrated in Fig. 5 bi, respectively, together with their relative contributions to the Hirshfeld surface. The most abundant inter­action is H⋯H, contributing 60.2% to the overall crystal packing, which is reflected in Fig. 5 b as the widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.16 Å. As a result of the presence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts contribute 27.0% to the overall crystal packing and are shown in Fig. 5 c with the tips at d e + d i = 2.51 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (Fig. 5 d) with the tips at d e + d i = 2.86 Å contribute 7.4% to the HS. The pair of wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5 e) with a 2.3% contribution to the HS is seen with the tips at d e + d i = 2.98 Å while the H⋯O/O⋯H (Fig. 5 f) contacts with a 1.4% contribution to the HS are viewed as pairs of wings with the tips at d e + d i = 2.86 Å and d e + d i = 3.00Å for the long and short ones, respectively. Finally, the C⋯C (Fig. 5 g), C⋯O/O⋯C (Fig. 5 h) and N⋯O/O⋯N (Fig. 5 i) contacts with 0.7%, 0.5% and 0.5% contributions, respectively, to the HS have very low distributions of points. The Hirshfeld surface representations as fragment patches plotted onto the surface are shown for the H⋯H and H⋯C/C⋯H inter­actions in Fig. 6 ab, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯N/N⋯H, (f) H⋯O/O⋯H, (g) C⋯C, (h) C⋯O/O⋯C and (i) N⋯O/O⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Figure 6.

Figure 6

The Hirshfeld surface representations as fragment patches plotted onto the surface for (a) H⋯H and (b) H⋯C/C⋯H inter­actions.

5. Database survey

A survey of the Cambridge Structural Database (CSD version, updated to November 2023; Groom et al., 2016) with the search fragment I (R = R′ = nothing) yielded five hits, all of which contain only one ferrocenyl group and the first four have a trans disposition of R and R′. These structures include ones with R = 2-ClC6H4NH, R′ = PhC(=O) (DEZHUN; Gul et al., 2013a ); R = 3-NO2-4-ClC6H3NH; R′ = 3-ClC6H4C(=O) (JARZUB; Ozdemir, 2021); R = 3,4-Cl2C6H3NH, R′ = 3-ClC6H4C(=O) (NIKQOP; Gul et al., 2013b ); R = 3-CF3C6H4NH, R′ = PhC(=O) (QAGTEA; Gul et al., 2014) and R = p-tolNH, R′ = PhC(=O) (QAHWAZ; Gul et al., 2014). 5.

6. Synthesis and crystallization

4-Ferrocenyl aniline was synthesized using a previously described procedure (Adil et al., 2018). In a 100 ml flask, 4-ferrocenyl aniline (1 mmol) and 4-ferrocenylphenyl carbonimidic dichloride (1 mmol) were dissolved in DMF (20 mL) to which potassium carbonate (2 mmol) and tetra-n-butyl ammonium bromide (0.20 mmol) were added. The reaction mixture was stirred at reflux for 12 h. The DMF was removed by rotary evaporation and distilled water was added to the residue, which was then extracted with di­chloro­methane. The organic phase was dried with Na2SO4, filtered and evaporated under reduced pressure. The residue was then purified by silica column chromatography, eluting with a mixture of hexa­ne/ethyl acetate (4/1) and the solid obtained upon evaporation of the eluant was recrystallized from ethanol (yield: 92%, m.p. 258 K). 6.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms attached to carbon were placed in idealized positions with isotropic displacement parameters tied to those of the attached atoms. The two components of the disordered hydrogen attached to nitro­gen were located in a difference map and refined with a DFIX 0.91 0.01 instruction with isotropic displacement parameters 1.2 times that of the attached nitro­gen and equal occupancies.

Table 3. Experimental details.

Crystal data
Chemical formula [Fe2(C5H5)2(C23H17ClN2)]
M r 671.81
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 8.0175 (10), 11.3134 (14), 17.408 (2)
α, β, γ (°) 95.099 (2), 99.963 (2), 96.414 (2)
V3) 1536.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.35 × 0.30 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.71, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 19205, 9949, 7143
R int 0.034
(sin θ/λ)max−1) 0.737
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.131, 1.03
No. of reflections 9949
No. of parameters 396
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.85

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a ), SHELXL-2019/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989024001002/ox2002sup1.cif

e-80-00262-sup1.cif (589.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001002/ox2002Isup2.hkl

e-80-00262-Isup2.hkl (789.4KB, hkl)
e-80-00262-Isup3.cdx (6.7KB, cdx)

Supporting information file. DOI: 10.1107/S2056989024001002/ox2002Isup3.cdx

CCDC reference: 2329443

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Fe2(C5H5)2(C23H17ClN2)] Z = 2
Mr = 671.81 F(000) = 696
Triclinic, P1 Dx = 1.453 Mg m3
a = 8.0175 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.3134 (14) Å Cell parameters from 9233 reflections
c = 17.408 (2) Å θ = 2.3–31.6°
α = 95.099 (2)° µ = 1.07 mm1
β = 99.963 (2)° T = 150 K
γ = 96.414 (2)° Plate, orange
V = 1536.0 (3) Å3 0.35 × 0.30 × 0.03 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 9949 independent reflections
Radiation source: fine-focus sealed tube 7143 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 7.3910 pixels mm-1 θmax = 31.6°, θmin = 2.3°
φ and ω scans h = −11→11
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −16→16
Tmin = 0.71, Tmax = 0.96 l = −25→25
19205 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: mixed
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8875P] where P = (Fo2 + 2Fc2)/3
9949 reflections (Δ/σ)max = 0.001
396 parameters Δρmax = 0.54 e Å3
2 restraints Δρmin = −0.85 e Å3

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 20 sec/frame was used.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen were placed in locations derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The central {NH—C(Cl)═N} portion is disordered in essentially equal amounts leading to two locations for the hydrogen atom and equal NC distances. Two reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 1.37373 (4) 0.63325 (3) 0.87322 (2) 0.02325 (8)
Fe2 0.07704 (4) 0.90503 (3) 0.14060 (2) 0.02200 (8)
Cl1 0.81676 (8) 0.78250 (5) 0.48737 (4) 0.03526 (14)
N1 0.7405 (2) 0.55410 (16) 0.51322 (11) 0.0235 (4)
H1 0.695 (6) 0.4785 (19) 0.492 (3) 0.028* 0.5
N2 0.5880 (2) 0.60294 (17) 0.40311 (11) 0.0250 (4)
H1B 0.545 (7) 0.5247 (16) 0.401 (3) 0.030* 0.5
C1 1.6276 (3) 0.6844 (3) 0.8766 (2) 0.0520 (9)
H1A 1.719399 0.631160 0.882788 0.062*
C2 1.5318 (4) 0.7073 (3) 0.8050 (2) 0.0458 (7)
H2 1.543702 0.673373 0.751491 0.055*
C3 1.4175 (3) 0.7870 (2) 0.82208 (16) 0.0360 (6)
H3 1.333001 0.818748 0.782517 0.043*
C4 1.4400 (3) 0.8136 (2) 0.90388 (17) 0.0360 (6)
H4 1.375259 0.867808 0.932501 0.043*
C5 1.5711 (4) 0.7501 (3) 0.93865 (19) 0.0453 (7)
H5 1.616204 0.751766 0.996066 0.054*
C6 1.1536 (3) 0.53288 (19) 0.81168 (13) 0.0218 (4)
C7 1.2867 (3) 0.45906 (19) 0.82827 (13) 0.0233 (4)
H7 1.334693 0.410700 0.788454 0.028*
C8 1.3395 (3) 0.4672 (2) 0.91084 (14) 0.0286 (5)
H8 1.431207 0.425495 0.939174 0.034*
C9 1.2413 (3) 0.5455 (2) 0.94644 (14) 0.0290 (5)
H9 1.251227 0.568080 1.004055 0.035*
C10 1.1260 (3) 0.5865 (2) 0.88539 (13) 0.0249 (4)
H10 1.041297 0.643043 0.892816 0.030*
C11 1.0568 (3) 0.54542 (19) 0.73328 (12) 0.0213 (4)
C12 1.0447 (3) 0.4563 (2) 0.67087 (13) 0.0233 (4)
H12 1.105904 0.389711 0.678342 0.028*
C13 0.9452 (3) 0.4631 (2) 0.59827 (13) 0.0241 (4)
H13 0.939304 0.401614 0.556665 0.029*
C14 0.8535 (3) 0.56001 (19) 0.58587 (13) 0.0223 (4)
C15 0.8653 (3) 0.65036 (19) 0.64720 (13) 0.0243 (4)
H15 0.804354 0.717018 0.639563 0.029*
C16 0.9662 (3) 0.64274 (19) 0.71946 (13) 0.0238 (4)
H16 0.974038 0.705219 0.760665 0.029*
C17 0.7107 (3) 0.64420 (19) 0.46750 (13) 0.0224 (4)
C18 0.5173 (3) 0.65737 (19) 0.33737 (13) 0.0215 (4)
C19 0.3789 (3) 0.5892 (2) 0.28742 (14) 0.0260 (4)
H19 0.339475 0.511829 0.299358 0.031*
C20 0.2979 (3) 0.6318 (2) 0.22089 (13) 0.0255 (4)
H20 0.203611 0.583399 0.187916 0.031*
C21 0.3523 (3) 0.74514 (18) 0.20122 (13) 0.0209 (4)
C22 0.4938 (3) 0.8110 (2) 0.25035 (14) 0.0267 (5)
H22 0.535424 0.887311 0.237483 0.032*
C23 0.5765 (3) 0.7693 (2) 0.31754 (14) 0.0272 (5)
H23 0.672821 0.816635 0.349791 0.033*
C24 0.2600 (3) 0.79388 (19) 0.13310 (13) 0.0216 (4)
C25 0.0994 (3) 0.7426 (2) 0.08542 (14) 0.0255 (4)
H25 0.033179 0.664561 0.091133 0.031*
C26 0.0495 (3) 0.8218 (2) 0.02916 (14) 0.0277 (5)
H26 −0.057611 0.809202 −0.011338 0.033*
C27 0.1775 (3) 0.9230 (2) 0.04117 (14) 0.0270 (5)
H27 0.175995 0.993803 0.010649 0.032*
C28 0.3065 (3) 0.9062 (2) 0.10470 (13) 0.0252 (4)
H28 0.411516 0.963704 0.126666 0.030*
C29 −0.1556 (3) 0.9466 (2) 0.15862 (16) 0.0346 (5)
H29 −0.265962 0.926545 0.120477 0.041*
C30 −0.0392 (3) 1.0524 (2) 0.16516 (15) 0.0325 (5)
H30 −0.052690 1.120135 0.132317 0.039*
C31 0.1004 (4) 1.0450 (2) 0.22600 (15) 0.0339 (5)
H31 0.202644 1.106623 0.243602 0.041*
C32 0.0705 (4) 0.9344 (3) 0.25732 (15) 0.0364 (6)
H32 0.147494 0.904772 0.300942 0.044*
C33 −0.0878 (4) 0.8739 (3) 0.21588 (17) 0.0379 (6)
H33 −0.142146 0.793681 0.224987 0.045*
O1 0.5848 (2) 0.33700 (16) 0.41848 (12) 0.0377 (4)
N3 0.6722 (3) 0.15580 (18) 0.39189 (13) 0.0327 (5)
C34 0.6909 (3) 0.2730 (2) 0.40136 (16) 0.0350 (6)
H34 0.797002 0.312878 0.394321 0.042*
C35 0.8031 (3) 0.0875 (2) 0.37001 (17) 0.0354 (6)
H35A 0.831326 0.032017 0.408975 0.053*
H35B 0.905549 0.142311 0.367938 0.053*
H35C 0.760721 0.042240 0.318342 0.053*
C36 0.5091 (5) 0.0882 (3) 0.3964 (3) 0.0859 (16)
H36A 0.528889 0.023536 0.429413 0.129*
H36B 0.450962 0.054033 0.343533 0.129*
H36C 0.437852 0.141506 0.419112 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01885 (15) 0.02022 (16) 0.02790 (17) −0.00233 (11) 0.00133 (12) −0.00034 (12)
Fe2 0.02162 (15) 0.01953 (15) 0.02435 (16) 0.00175 (11) 0.00369 (12) 0.00191 (11)
Cl1 0.0389 (3) 0.0267 (3) 0.0347 (3) −0.0060 (2) −0.0032 (2) 0.0059 (2)
N1 0.0256 (9) 0.0188 (8) 0.0239 (9) 0.0004 (7) 0.0005 (7) 0.0016 (7)
N2 0.0263 (9) 0.0211 (9) 0.0252 (9) −0.0009 (7) −0.0007 (7) 0.0049 (7)
C1 0.0189 (12) 0.0305 (14) 0.104 (3) −0.0030 (10) 0.0082 (14) 0.0055 (16)
C2 0.0434 (16) 0.0371 (15) 0.0573 (19) −0.0146 (12) 0.0282 (14) −0.0042 (13)
C3 0.0358 (14) 0.0278 (12) 0.0413 (15) −0.0080 (10) 0.0044 (11) 0.0079 (11)
C4 0.0383 (14) 0.0216 (11) 0.0458 (15) −0.0070 (10) 0.0115 (12) −0.0030 (10)
C5 0.0377 (15) 0.0356 (15) 0.0491 (17) −0.0186 (12) −0.0144 (12) 0.0045 (12)
C6 0.0190 (9) 0.0199 (9) 0.0248 (10) −0.0025 (7) 0.0028 (8) 0.0018 (8)
C7 0.0219 (10) 0.0188 (10) 0.0266 (11) −0.0012 (7) 0.0015 (8) 0.0004 (8)
C8 0.0279 (11) 0.0253 (11) 0.0295 (12) −0.0006 (9) −0.0019 (9) 0.0055 (9)
C9 0.0276 (11) 0.0316 (12) 0.0253 (11) −0.0034 (9) 0.0033 (9) 0.0019 (9)
C10 0.0210 (10) 0.0258 (11) 0.0260 (11) −0.0021 (8) 0.0036 (8) 0.0009 (8)
C11 0.0196 (9) 0.0210 (10) 0.0221 (10) −0.0018 (7) 0.0031 (8) 0.0022 (8)
C12 0.0225 (10) 0.0225 (10) 0.0248 (10) 0.0034 (8) 0.0036 (8) 0.0022 (8)
C13 0.0260 (10) 0.0210 (10) 0.0234 (10) 0.0013 (8) 0.0023 (8) −0.0010 (8)
C14 0.0219 (10) 0.0216 (10) 0.0227 (10) −0.0009 (8) 0.0045 (8) 0.0030 (8)
C15 0.0252 (10) 0.0193 (10) 0.0282 (11) 0.0029 (8) 0.0043 (9) 0.0037 (8)
C16 0.0252 (10) 0.0181 (10) 0.0267 (11) −0.0006 (8) 0.0044 (8) −0.0006 (8)
C17 0.0200 (9) 0.0223 (10) 0.0244 (10) 0.0011 (8) 0.0033 (8) 0.0036 (8)
C18 0.0206 (9) 0.0207 (10) 0.0231 (10) 0.0020 (7) 0.0036 (8) 0.0029 (8)
C19 0.0237 (10) 0.0218 (10) 0.0308 (12) −0.0042 (8) 0.0043 (9) 0.0050 (8)
C20 0.0223 (10) 0.0232 (10) 0.0278 (11) −0.0047 (8) 0.0002 (8) 0.0036 (8)
C21 0.0195 (9) 0.0195 (9) 0.0240 (10) 0.0020 (7) 0.0050 (8) 0.0026 (8)
C22 0.0276 (11) 0.0192 (10) 0.0308 (12) −0.0038 (8) 0.0013 (9) 0.0052 (8)
C23 0.0248 (11) 0.0229 (11) 0.0302 (12) −0.0038 (8) −0.0013 (9) 0.0042 (9)
C24 0.0204 (9) 0.0188 (9) 0.0261 (10) 0.0028 (7) 0.0051 (8) 0.0030 (8)
C25 0.0261 (11) 0.0196 (10) 0.0290 (11) 0.0019 (8) 0.0030 (9) −0.0012 (8)
C26 0.0285 (11) 0.0281 (11) 0.0245 (11) 0.0048 (9) 0.0004 (9) −0.0013 (9)
C27 0.0284 (11) 0.0282 (11) 0.0260 (11) 0.0045 (9) 0.0064 (9) 0.0075 (9)
C28 0.0224 (10) 0.0257 (11) 0.0279 (11) 0.0014 (8) 0.0056 (8) 0.0061 (9)
C29 0.0264 (12) 0.0400 (14) 0.0390 (14) 0.0102 (10) 0.0080 (10) 0.0019 (11)
C30 0.0404 (14) 0.0267 (12) 0.0328 (13) 0.0127 (10) 0.0086 (11) 0.0015 (9)
C31 0.0391 (14) 0.0301 (12) 0.0302 (12) 0.0065 (10) 0.0036 (10) −0.0063 (10)
C32 0.0452 (15) 0.0407 (14) 0.0275 (12) 0.0175 (12) 0.0105 (11) 0.0040 (10)
C33 0.0392 (14) 0.0380 (14) 0.0431 (15) 0.0072 (11) 0.0226 (12) 0.0083 (12)
O1 0.0391 (10) 0.0233 (9) 0.0504 (11) 0.0015 (7) 0.0127 (9) −0.0026 (8)
N3 0.0327 (11) 0.0233 (10) 0.0435 (12) 0.0002 (8) 0.0136 (9) 0.0027 (9)
C34 0.0342 (13) 0.0248 (12) 0.0447 (15) −0.0042 (10) 0.0123 (11) −0.0030 (10)
C35 0.0308 (13) 0.0270 (12) 0.0465 (15) 0.0022 (10) 0.0055 (11) −0.0014 (11)
C36 0.061 (2) 0.0351 (18) 0.173 (5) −0.0037 (16) 0.064 (3) 0.000 (2)

Geometric parameters (Å, º)

Fe1—C1 2.042 (3) C12—C13 1.386 (3)
Fe1—C2 2.044 (3) C12—H12 0.9500
Fe1—C3 2.046 (2) C13—C14 1.398 (3)
Fe1—C5 2.047 (3) C13—H13 0.9500
Fe1—C4 2.048 (2) C14—C15 1.394 (3)
Fe1—C9 2.048 (2) C15—C16 1.388 (3)
Fe1—C8 2.049 (2) C15—H15 0.9500
Fe1—C10 2.049 (2) C16—H16 0.9500
Fe1—C7 2.053 (2) C18—C19 1.392 (3)
Fe1—C6 2.058 (2) C18—C23 1.396 (3)
Fe2—C25 2.038 (2) C19—C20 1.380 (3)
Fe2—C32 2.040 (3) C19—H19 0.9500
Fe2—C33 2.041 (3) C20—C21 1.399 (3)
Fe2—C28 2.042 (2) C20—H20 0.9500
Fe2—C31 2.042 (2) C21—C22 1.391 (3)
Fe2—C29 2.043 (2) C21—C24 1.470 (3)
Fe2—C26 2.044 (2) C22—C23 1.389 (3)
Fe2—C30 2.047 (2) C22—H22 0.9500
Fe2—C27 2.048 (2) C23—H23 0.9500
Fe2—C24 2.050 (2) C24—C25 1.436 (3)
Cl1—C17 1.672 (2) C24—C28 1.438 (3)
N1—C17 1.365 (3) C25—C26 1.423 (3)
N1—C14 1.414 (3) C25—H25 1.0000
N1—H1 0.908 (10) C26—C27 1.424 (3)
N2—C17 1.366 (3) C26—H26 1.0000
N2—C18 1.410 (3) C27—C28 1.419 (3)
N2—H1B 0.909 (10) C27—H27 1.0000
C1—C2 1.407 (5) C28—H28 1.0000
C1—C5 1.423 (5) C29—C30 1.417 (4)
C1—H1A 1.0000 C29—C33 1.423 (4)
C2—C3 1.404 (4) C29—H29 1.0000
C2—H2 1.0000 C30—C31 1.417 (4)
C3—C4 1.405 (4) C30—H30 1.0000
C3—H3 1.0000 C31—C32 1.420 (4)
C4—C5 1.419 (4) C31—H31 1.0000
C4—H4 1.0000 C32—C33 1.414 (4)
C5—H5 1.0000 C32—H32 1.0000
C6—C10 1.433 (3) C33—H33 1.0000
C6—C7 1.434 (3) O1—C34 1.234 (3)
C6—C11 1.475 (3) N3—C34 1.310 (3)
C7—C8 1.418 (3) N3—C35 1.452 (3)
C7—H7 1.0000 N3—C36 1.457 (4)
C8—C9 1.420 (4) C34—H34 0.9500
C8—H8 1.0000 C35—H35A 0.9800
C9—C10 1.429 (3) C35—H35B 0.9800
C9—H9 1.0000 C35—H35C 0.9800
C10—H10 1.0000 C36—H36A 0.9800
C11—C12 1.398 (3) C36—H36B 0.9800
C11—C16 1.401 (3) C36—H36C 0.9800
C1—Fe1—C2 40.28 (14) Fe1—C7—H7 125.9
C1—Fe1—C3 67.51 (12) C7—C8—C9 108.5 (2)
C2—Fe1—C3 40.15 (12) C7—C8—Fe1 69.91 (13)
C1—Fe1—C5 40.74 (14) C9—C8—Fe1 69.71 (14)
C2—Fe1—C5 68.17 (13) C7—C8—H8 125.8
C3—Fe1—C5 67.77 (11) C9—C8—H8 125.8
C1—Fe1—C4 68.04 (12) Fe1—C8—H8 125.8
C2—Fe1—C4 67.86 (11) C8—C9—C10 107.9 (2)
C3—Fe1—C4 40.13 (11) C8—C9—Fe1 69.75 (14)
C5—Fe1—C4 40.54 (12) C10—C9—Fe1 69.61 (13)
C1—Fe1—C9 133.24 (13) C8—C9—H9 126.0
C2—Fe1—C9 172.21 (12) C10—C9—H9 126.0
C3—Fe1—C9 146.77 (11) Fe1—C9—H9 126.0
C5—Fe1—C9 109.48 (11) C9—C10—C6 108.1 (2)
C4—Fe1—C9 115.59 (11) C9—C10—Fe1 69.56 (13)
C1—Fe1—C8 109.76 (11) C6—C10—Fe1 69.91 (12)
C2—Fe1—C8 132.96 (12) C9—C10—H10 126.0
C3—Fe1—C8 171.90 (11) C6—C10—H10 126.0
C5—Fe1—C8 115.58 (11) Fe1—C10—H10 126.0
C4—Fe1—C8 146.98 (11) C12—C11—C16 117.50 (19)
C9—Fe1—C8 40.54 (10) C12—C11—C6 120.7 (2)
C1—Fe1—C10 172.56 (13) C16—C11—C6 121.8 (2)
C2—Fe1—C10 146.10 (12) C13—C12—C11 121.3 (2)
C3—Fe1—C10 115.30 (10) C13—C12—H12 119.4
C5—Fe1—C10 132.83 (12) C11—C12—H12 119.4
C4—Fe1—C10 109.28 (10) C12—C13—C14 120.5 (2)
C9—Fe1—C10 40.83 (9) C12—C13—H13 119.8
C8—Fe1—C10 68.41 (10) C14—C13—H13 119.8
C1—Fe1—C7 115.15 (11) C15—C14—C13 119.1 (2)
C2—Fe1—C7 109.26 (11) C15—C14—N1 123.6 (2)
C3—Fe1—C7 132.87 (10) C13—C14—N1 117.03 (19)
C5—Fe1—C7 146.57 (11) C16—C15—C14 119.9 (2)
C4—Fe1—C7 171.80 (10) C16—C15—H15 120.1
C9—Fe1—C7 68.31 (10) C14—C15—H15 120.1
C8—Fe1—C7 40.45 (9) C15—C16—C11 121.8 (2)
C10—Fe1—C7 68.51 (9) C15—C16—H16 119.1
C1—Fe1—C6 146.01 (12) C11—C16—H16 119.1
C2—Fe1—C6 114.71 (11) N1—C17—N2 109.99 (19)
C3—Fe1—C6 109.19 (10) N1—C17—Cl1 123.90 (17)
C5—Fe1—C6 171.99 (12) N2—C17—Cl1 126.07 (17)
C4—Fe1—C6 132.48 (10) C19—C18—C23 118.5 (2)
C9—Fe1—C6 68.68 (9) C19—C18—N2 115.36 (19)
C8—Fe1—C6 68.48 (9) C23—C18—N2 126.1 (2)
C10—Fe1—C6 40.84 (9) C20—C19—C18 121.3 (2)
C7—Fe1—C6 40.83 (9) C20—C19—H19 119.4
C25—Fe2—C32 123.61 (10) C18—C19—H19 119.4
C25—Fe2—C33 106.62 (11) C19—C20—C21 121.1 (2)
C32—Fe2—C33 40.56 (12) C19—C20—H20 119.5
C25—Fe2—C28 68.76 (9) C21—C20—H20 119.5
C32—Fe2—C28 119.74 (11) C22—C21—C20 117.1 (2)
C33—Fe2—C28 154.51 (11) C22—C21—C24 121.61 (19)
C25—Fe2—C31 160.99 (10) C20—C21—C24 121.25 (19)
C32—Fe2—C31 40.72 (11) C23—C22—C21 122.4 (2)
C33—Fe2—C31 68.25 (11) C23—C22—H22 118.8
C28—Fe2—C31 107.53 (10) C21—C22—H22 118.8
C25—Fe2—C29 120.65 (10) C22—C23—C18 119.6 (2)
C32—Fe2—C29 68.48 (11) C22—C23—H23 120.2
C33—Fe2—C29 40.78 (11) C18—C23—H23 120.2
C28—Fe2—C29 163.14 (10) C25—C24—C28 106.56 (19)
C31—Fe2—C29 68.25 (11) C25—C24—C21 126.56 (19)
C25—Fe2—C26 40.80 (9) C28—C24—C21 126.74 (19)
C32—Fe2—C26 161.42 (11) C25—C24—Fe2 68.99 (12)
C33—Fe2—C26 125.31 (11) C28—C24—Fe2 69.14 (12)
C28—Fe2—C26 68.49 (9) C21—C24—Fe2 123.44 (15)
C31—Fe2—C26 156.89 (10) C26—C25—C24 108.57 (19)
C29—Fe2—C26 108.59 (10) C26—C25—Fe2 69.84 (13)
C25—Fe2—C30 156.43 (10) C24—C25—Fe2 69.87 (12)
C32—Fe2—C30 68.44 (10) C26—C25—H25 125.7
C33—Fe2—C30 68.33 (11) C24—C25—H25 125.7
C28—Fe2—C30 125.81 (10) Fe2—C25—H25 125.7
C31—Fe2—C30 40.55 (10) C25—C26—C27 108.1 (2)
C29—Fe2—C30 40.53 (11) C25—C26—Fe2 69.37 (13)
C26—Fe2—C30 122.09 (10) C27—C26—Fe2 69.78 (13)
C25—Fe2—C27 68.68 (10) C25—C26—H26 125.9
C32—Fe2—C27 155.59 (11) C27—C26—H26 125.9
C33—Fe2—C27 163.08 (11) Fe2—C26—H26 125.9
C28—Fe2—C27 40.62 (9) C28—C27—C26 107.9 (2)
C31—Fe2—C27 121.45 (11) C28—C27—Fe2 69.47 (13)
C29—Fe2—C27 126.45 (10) C26—C27—Fe2 69.50 (13)
C26—Fe2—C27 40.72 (9) C28—C27—H27 126.0
C30—Fe2—C27 109.09 (10) C26—C27—H27 126.0
C25—Fe2—C24 41.13 (9) Fe2—C27—H27 126.0
C32—Fe2—C24 105.37 (10) C27—C28—C24 108.8 (2)
C33—Fe2—C24 118.80 (10) C27—C28—Fe2 69.91 (13)
C28—Fe2—C24 41.16 (8) C24—C28—Fe2 69.71 (12)
C31—Fe2—C24 123.86 (10) C27—C28—H28 125.6
C29—Fe2—C24 154.87 (10) C24—C28—H28 125.6
C26—Fe2—C24 69.09 (9) Fe2—C28—H28 125.6
C30—Fe2—C24 161.86 (10) C30—C29—C33 107.9 (2)
C27—Fe2—C24 69.09 (9) C30—C29—Fe2 69.92 (14)
C17—N1—C14 128.02 (18) C33—C29—Fe2 69.55 (14)
C17—N1—H1 117 (3) C30—C29—H29 126.0
C14—N1—H1 114 (3) C33—C29—H29 126.0
C17—N2—C18 132.46 (19) Fe2—C29—H29 126.0
C17—N2—H1B 114 (3) C29—C30—C31 107.9 (2)
C18—N2—H1B 113 (3) C29—C30—Fe2 69.55 (14)
C2—C1—C5 108.2 (3) C31—C30—Fe2 69.53 (14)
C2—C1—Fe1 69.94 (15) C29—C30—H30 126.0
C5—C1—Fe1 69.83 (16) C31—C30—H30 126.0
C2—C1—H1A 125.9 Fe2—C30—H30 126.0
C5—C1—H1A 125.9 C30—C31—C32 108.2 (2)
Fe1—C1—H1A 125.9 C30—C31—Fe2 69.92 (14)
C3—C2—C1 107.8 (3) C32—C31—Fe2 69.56 (14)
C3—C2—Fe1 70.00 (15) C30—C31—H31 125.9
C1—C2—Fe1 69.79 (17) C32—C31—H31 125.9
C3—C2—H2 126.1 Fe2—C31—H31 125.9
C1—C2—H2 126.1 C33—C32—C31 107.8 (2)
Fe1—C2—H2 126.1 C33—C32—Fe2 69.75 (15)
C2—C3—C4 108.8 (3) C31—C32—Fe2 69.72 (14)
C2—C3—Fe1 69.85 (16) C33—C32—H32 126.1
C4—C3—Fe1 70.02 (15) C31—C32—H32 126.1
C2—C3—H3 125.6 Fe2—C32—H32 126.1
C4—C3—H3 125.6 C32—C33—C29 108.1 (2)
Fe1—C3—H3 125.6 C32—C33—Fe2 69.70 (15)
C3—C4—C5 107.8 (3) C29—C33—Fe2 69.67 (14)
C3—C4—Fe1 69.85 (14) C32—C33—H33 125.9
C5—C4—Fe1 69.69 (15) C29—C33—H33 125.9
C3—C4—H4 126.1 Fe2—C33—H33 125.9
C5—C4—H4 126.1 C34—N3—C35 123.0 (2)
Fe1—C4—H4 126.1 C34—N3—C36 120.0 (2)
C4—C5—C1 107.3 (3) C35—N3—C36 116.8 (2)
C4—C5—Fe1 69.77 (14) O1—C34—N3 126.7 (2)
C1—C5—Fe1 69.44 (15) O1—C34—H34 116.6
C4—C5—H5 126.4 N3—C34—H34 116.6
C1—C5—H5 126.4 N3—C35—H35A 109.5
Fe1—C5—H5 126.4 N3—C35—H35B 109.5
C10—C6—C7 107.30 (19) H35A—C35—H35B 109.5
C10—C6—C11 126.6 (2) N3—C35—H35C 109.5
C7—C6—C11 126.0 (2) H35A—C35—H35C 109.5
C10—C6—Fe1 69.26 (12) H35B—C35—H35C 109.5
C7—C6—Fe1 69.39 (12) N3—C36—H36A 109.5
C11—C6—Fe1 129.10 (15) N3—C36—H36B 109.5
C8—C7—C6 108.2 (2) H36A—C36—H36B 109.5
C8—C7—Fe1 69.64 (13) N3—C36—H36C 109.5
C6—C7—Fe1 69.79 (12) H36A—C36—H36C 109.5
C8—C7—H7 125.9 H36B—C36—H36C 109.5
C6—C7—H7 125.9
C5—C1—C2—C3 0.4 (3) C18—N2—C17—Cl1 0.8 (4)
Fe1—C1—C2—C3 59.91 (18) C17—N2—C18—C19 −173.0 (2)
C5—C1—C2—Fe1 −59.55 (19) C17—N2—C18—C23 9.1 (4)
C1—C2—C3—C4 −0.4 (3) C23—C18—C19—C20 −1.9 (3)
Fe1—C2—C3—C4 59.35 (18) N2—C18—C19—C20 −179.9 (2)
C1—C2—C3—Fe1 −59.77 (18) C18—C19—C20—C21 0.1 (4)
C2—C3—C4—C5 0.3 (3) C19—C20—C21—C22 1.7 (3)
Fe1—C3—C4—C5 59.57 (17) C19—C20—C21—C24 −176.2 (2)
C2—C3—C4—Fe1 −59.25 (18) C20—C21—C22—C23 −1.8 (3)
C3—C4—C5—C1 −0.1 (3) C24—C21—C22—C23 176.1 (2)
Fe1—C4—C5—C1 59.57 (18) C21—C22—C23—C18 0.0 (4)
C3—C4—C5—Fe1 −59.67 (17) C19—C18—C23—C22 1.8 (3)
C2—C1—C5—C4 −0.2 (3) N2—C18—C23—C22 179.6 (2)
Fe1—C1—C5—C4 −59.78 (18) C22—C21—C24—C25 −170.1 (2)
C2—C1—C5—Fe1 59.62 (18) C20—C21—C24—C25 7.7 (3)
C10—C6—C7—C8 0.1 (2) C22—C21—C24—C28 5.0 (3)
C11—C6—C7—C8 −176.8 (2) C20—C21—C24—C28 −177.1 (2)
Fe1—C6—C7—C8 59.21 (15) C22—C21—C24—Fe2 −82.7 (2)
C10—C6—C7—Fe1 −59.10 (14) C20—C21—C24—Fe2 95.1 (2)
C11—C6—C7—Fe1 124.0 (2) C28—C24—C25—C26 0.1 (3)
C6—C7—C8—C9 −0.1 (3) C21—C24—C25—C26 176.1 (2)
Fe1—C7—C8—C9 59.25 (16) Fe2—C24—C25—C26 59.31 (16)
C6—C7—C8—Fe1 −59.31 (15) C28—C24—C25—Fe2 −59.19 (15)
C7—C8—C9—C10 0.0 (3) C21—C24—C25—Fe2 116.8 (2)
Fe1—C8—C9—C10 59.35 (16) C24—C25—C26—C27 −0.1 (3)
C7—C8—C9—Fe1 −59.37 (16) Fe2—C25—C26—C27 59.21 (17)
C8—C9—C10—C6 0.1 (3) C24—C25—C26—Fe2 −59.33 (16)
Fe1—C9—C10—C6 59.53 (15) C25—C26—C27—C28 0.1 (3)
C8—C9—C10—Fe1 −59.44 (16) Fe2—C26—C27—C28 59.03 (16)
C7—C6—C10—C9 −0.1 (2) C25—C26—C27—Fe2 −58.95 (16)
C11—C6—C10—C9 176.7 (2) C26—C27—C28—C24 0.0 (3)
Fe1—C6—C10—C9 −59.31 (15) Fe2—C27—C28—C24 59.04 (16)
C7—C6—C10—Fe1 59.19 (14) C26—C27—C28—Fe2 −59.04 (17)
C11—C6—C10—Fe1 −124.0 (2) C25—C24—C28—C27 −0.1 (3)
C10—C6—C11—C12 −153.8 (2) C21—C24—C28—C27 −176.0 (2)
C7—C6—C11—C12 22.5 (3) Fe2—C24—C28—C27 −59.17 (16)
Fe1—C6—C11—C12 114.2 (2) C25—C24—C28—Fe2 59.10 (15)
C10—C6—C11—C16 22.6 (3) C21—C24—C28—Fe2 −116.8 (2)
C7—C6—C11—C16 −161.1 (2) C33—C29—C30—C31 0.2 (3)
Fe1—C6—C11—C16 −69.4 (3) Fe2—C29—C30—C31 −59.14 (18)
C16—C11—C12—C13 −0.8 (3) C33—C29—C30—Fe2 59.39 (17)
C6—C11—C12—C13 175.8 (2) C29—C30—C31—C32 −0.1 (3)
C11—C12—C13—C14 −0.2 (3) Fe2—C30—C31—C32 −59.22 (17)
C12—C13—C14—C15 0.8 (3) C29—C30—C31—Fe2 59.16 (17)
C12—C13—C14—N1 −173.2 (2) C30—C31—C32—C33 −0.1 (3)
C17—N1—C14—C15 46.0 (3) Fe2—C31—C32—C33 −59.58 (18)
C17—N1—C14—C13 −140.3 (2) C30—C31—C32—Fe2 59.45 (17)
C13—C14—C15—C16 −0.4 (3) C31—C32—C33—C29 0.3 (3)
N1—C14—C15—C16 173.2 (2) Fe2—C32—C33—C29 −59.28 (18)
C14—C15—C16—C11 −0.6 (3) C31—C32—C33—Fe2 59.56 (18)
C12—C11—C16—C15 1.2 (3) C30—C29—C33—C32 −0.3 (3)
C6—C11—C16—C15 −175.3 (2) Fe2—C29—C33—C32 59.29 (18)
C14—N1—C17—N2 −177.9 (2) C30—C29—C33—Fe2 −59.62 (18)
C14—N1—C17—Cl1 4.2 (3) C35—N3—C34—O1 178.6 (3)
C18—N2—C17—N1 −177.0 (2) C36—N3—C34—O1 4.2 (5)

Hydrogen-bond geometry (Å, º)

Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.91 (1) 1.98 (2) 2.862 (3) 163 (5)
C7—H7···Cg6i 1.00 2.63 3.569 (3) 157
C19—H19···Cg5ii 0.95 2.63 3.286 (3) 126
C23—H23···Cl1 0.95 2.55 3.219 (2) 127
C25—H25···Cg2ii 1.00 2.94 3.913 (3) 163
C34—H34···Cg5i 0.95 2.71 3.632 (3) 164
C35—H35C···Cg4iii 0.98 2.97 3.624 (3) 125

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y−1, z.

Funding Statement

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

  1. Adil, S., Khan, A. U., Badshah, H., Asghar, F., Usman, M., Badshah, A. & Ali, S. (2018). Drug Dev. Res. 79, 184–197. [DOI] [PubMed]
  2. Alama, A., Tasso, B., Novelli, F. & Sparatore, F. (2009). Drug Discovery Today, 14, 500–508. [DOI] [PubMed]
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  5. Dai, Z., Ni, J., Huang, X. H., Lu, G. & Bao, J. (2007). Bioelectrochemistry, 70, 250–256. [DOI] [PubMed]
  6. Gasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84–91. [DOI] [PubMed]
  7. Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gul, R., Khan, A., Badshah, A., Rauf, M. K., Shah, A., Zia-ur-Rehman, Bano, A., Naz, R. & Tahir, M. N. (2013a). J. Coord. Chem. 66, 1959–1973.
  10. Gul, R., Khan, A., Badshah, A. & Tahir, M. N. (2013b). Acta Cryst. E69, m486. [DOI] [PMC free article] [PubMed]
  11. Gul, R., Rauf, M. K., Badshah, A., Azam, S. S., Tahir, M. N. & Khan, A. (2014). Eur. J. Med. Chem. 85, 438–449. [DOI] [PubMed]
  12. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  13. Herrmann, W. A. (1988). Comments Inorg. Chem. 7, 73–107.
  14. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  15. Ibrahim, M. S. (2001). Anal. Chim. Acta, 443, 63–72.
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Krause, N., Aksin-Artok, Ö., Asikainen, M., Breker, V., Deutsch, C., Erdsack, J., Fan, H. T., Gockel, B., Minkler, S., Poonoth, M., Sawama, Y., Sawama, Y., Sun, T., Volz, F. & Winter, C. (2012). J. Organomet. Chem. 704, 1–8.
  18. Langeroodi, N. S. (2010). J. Chem. Soc. Pak. 32, 125–128.
  19. Li, B. J., Tian, S. L., Fang, Z. & Shi, Z. J. (2008). Angew. Chem. Int. Ed. 47, 1115–1118. [DOI] [PubMed]
  20. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  21. Nishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem. 61, 1172–1174.
  22. Ong, Y. C. & Gasser, G. (2020). Drug. Discov. Today: Technol. 37, 117–124. [DOI] [PubMed]
  23. Ozdemir, N. (2021). CSD Communication (refcode JARZUB). CCDC, Cambridge, England.
  24. Parveen, S., Arjmand, F. & Tabassum, S. (2019). Eur. J. Med. Chem. 175, 269–286. [DOI] [PubMed]
  25. Rehmani, F. S., Shafique, A., Tanoli, S. A. K., Ambreen, S., Inam-Ul-Haq, M., Rashid, S. & Abbas, S. S. (2010). J. Chem. Soc. Pak. 32, 467–470.
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  28. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  29. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  30. Togni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475–1477.
  31. Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236. [DOI] [PubMed]
  32. Tsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. J. (1996). J. Am. Chem. Soc. 118, 685–686.
  33. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  34. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989024001002/ox2002sup1.cif

e-80-00262-sup1.cif (589.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024001002/ox2002Isup2.hkl

e-80-00262-Isup2.hkl (789.4KB, hkl)
e-80-00262-Isup3.cdx (6.7KB, cdx)

Supporting information file. DOI: 10.1107/S2056989024001002/ox2002Isup3.cdx

CCDC reference: 2329443

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES