Skip to main content
Chemical Science logoLink to Chemical Science
. 2024 Jan 31;15(10):3495–3501. doi: 10.1039/d3sc06599e

Rare-earth metal ethylene and ethyne complexes

Wen Jiang a, Thayalan Rajeshkumar b, Mengyue Guo a, Yuejian Lin a, Laurent Maron b,, Lixin Zhang a,
PMCID: PMC10915835  PMID: 38455028

Abstract

Guanidinate homometallic rare-earth ethyl complexes [LLn(μ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(μ2-η1:η2-Et)(μ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(μ2-η1-Et)2(AlEt)]2(μ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4− unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(μ3-η1:η1:η2-C2H4)[(μ2-η1-Et)(AlEt2)(μ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(μ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at −10 °C.


An unprecedented rare-earth ethyne complex is presented, and the α-H abstraction and C–C σ bond metathesis mechanism is proposed based on DFT calculations. The first example of a well-defined non-Cp rare-earth ethylene complex via the β-H abstraction reaction is also described herein.graphic file with name d3sc06599e-ga.jpg

Introduction

Impressive progress has been witnessed in the development of the design and synthesis of new rare-earth alkyl complexes in the last few decades owing to their high activity in a wide range of stoichiometric and catalytic reactions.1–3 However, studies on the alkylidene and alkylidyne complexes are limited due to the HOMO/LUMO orbital energy mismatch between the rare-earth metal ions and carbon-centered orbitals,4–12 among which the deprotonation of AlMe3 and thermally induced methyl ligand degradation have been proven to be effective ways for the generation of CH22− and CH3− moieties. However, to our knowledge, compared to methyl congeners, only a few examples of rare-earth ethyl complexes and their derivatives have been isolated and structurally authenticated.13–16 Particularly, the rare-earth ethyl complexes engage in further degradation reactions, as shown for β-hydrogen abstraction as well as β-alkyl transfer, which are extremely limited,17 while the first ethylene complex prepared by Kaminsky's group was identified as the Zr–CH2CH2–Zr and Zr–CH2CH2–Al moieties generated by the reaction of Cp2ZrCl2 and AlEt3 in 1974.18 Bercaw et al. isolated the first ethylene bridged binuclear scandium complex {(C5Me4SiMe2 NtBu)Sc(PMe3)}2(μ-C2H4)17a (Scheme 1A). Anwander and co-workers reported the lanthanum ethyl complex La[(Et3Al)(μ-CH2CH2)(AlEt2)(μ-CH2CH2)(AlEt3)] containing two ethylene moieties17b (Scheme 1B). So the study on the chemistry of rare-earth ethylene complexes is still in its infancy; we became intensely interested in the synthetic strategies and the possible reactivity of the rare-earth ethylene complexes. In addition, we are also curious about whether the rare-earth ethyne complexes can be prepared from the rare-earth ethylene complexes via the C–H bond activation or other pathways. To our knowledge, in contrast to the late-transition metal ethylene and ethyne complexes,19,20 the early-transition metal ethylene analogues are less explored,18,21 and no rare earth metal ethyne complexes have been reported. With this in mind, we carried out the studies on the synthesis of rare-earth metal ethylene and ethyne complexes.

Scheme 1. Rare-earth ethylene and ethyne complexes.

Scheme 1

In this paper, distinctive guanidinato-based rare-earth ethylene and ethyne complexes were synthesized by controlling the molar ratio of the guanidinate dialkyl complexes22 with AlEt3. Moreover, the synthesis and bonding analysis (DFT) of the first rare-earth metal ethyne complex were studied.

Results and discussion

Synthesis and structural characterization

Firstly, the homoleptic rare-earth ethyl dimers [LLn(μ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y, 71%), Lu(1-Lu, 78%)) were afforded when two equivalents of AlEt3 were added to a toluene solution of dialkyl complexes at ambient temperature (Scheme 2). In the 1H VT NMR spectra of 1, only one set of signals assigned to ethyl groups was observed, evidencing the rapid exchange of the ethyl-bridged and the terminal ethyl units in the solvent (Fig. S3 and S6). The peak at δ = 0.59 ppm for 1-Y (0.86 ppm for 1-Lu) is assignable to LnCH2CH3, and the resonance of CH2CH3 exhibits a peak at δ = 1.49 ppm for 1-Y (1.51 ppm for 1-Lu). The carbon atom signals of ethyl at δ = 40.9, 13.1 ppm for 1-Y (46.8, 13.4 ppm for 1-Lu) in the 13C{1H} NMR spectra can be considered. It is noteworthy that no hydrogen abstraction products were isolated when 1 were heated in toluene up to 70 °C for 12 h. The molecular structure of 1-Lu is also characterized by the single-crystal X-ray diffraction (Fig. 1). The bridged ethyl units of 1-Lu display the μ-η1:η2-ethyl bonding to the lutetium center. This coordination mode has previously been observed in the divalent Yb complex (C5Me5)2Yb(μ-η1:η2-Et)AlEt2(THF)15 and the trivalent Sm derivatives (C5Me5)2Sm(THF)(μ-η1:η2-Et)AlEt3 (ref. 16a) and [(C5Me5)2Sm]2[(μ-η12-Et)2(μ-η1-Et)2Al4Et6(μ3-O)2].16b

Scheme 2. Synthesis of binuclear homometallic rare-earth ethyl complexes 1.

Scheme 2

Fig. 1. Molecular structure of 1-Lu with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Lu(1)–C(1) 2.332(4), Lu(1)–C(3) 2.435(4), Lu(1)–C(4) 2.848(5), C(1)–C(2) 1.531(6), C(3)–C(4) 1.528(6), Lu(1)–N(1) 2.275(3), Lu(1)–N(2) 2.296(3); Lu(1)–C(1)–C(2) 124.4(3), Lu(1)–C(3)–C(4) 88.8(3), C(1)–Lu(1)–C(3) 113.83(17), C(1)–Lu(1)–C(4) 90.88(17).

Fig. 1

According to the relevant reports of heterobimetallic Y/Al methyl complexes,23 we might get a series of unique structural rare-earth ethyl complexes and their derivatives by controlling the amount of AlEt3. Thus, the treatment of LLn(CH2C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (3 equiv.) in toluene provided the heterobimetallic mixed ethyl/tetraethylaluminate complexes LLn(Et)(μ2-η1:η2-Et)(μ2-η1-Et)(AlEt2) (Ln = Y(2-Y for 83%), Lu(2-Lu for 90%)) (Scheme 3). In the NMR spectra of 2, the distinct differences of chemical shifts of [AlEt4] moieties (1.30(CH3) and 0.33(CH2) for 2-Y; 1.28(CH3) and 0.53(CH2) for 2-Lu) and end-on-coordinated ethyl units (Ln-CH2CH3: 1.78(CH3) and 0.85(CH2) for 2-Y; 1.84(CH3) and 0.86(CH2) for 2-Lu) are investigated based on a comprehensive analysis of the 13C DEPT-135 NMR and HMQC-NMR spectra. Additionally, the carbon atom signals of tetraethylaluminate moieties (10.8(CH2), 10.5(CH3) for 2-Y; 12.8(CH2), 10.9(CH3) for 2-Lu) and end-on-coordinated ethyl ligands (39.1(d, JYC = 56 Hz, CH2), 14.1(CH3) for 2-Y; 44.2(CH2), 14.4(CH3) for 2-Lu) in the 13C{1H} NMR spectra can be detected. The 89Y NMR spectrum of 2-Y has a resonance at δ = 850.1 ppm that is within the wide range found for the reported organometallic yttrium complexes (ESI, Fig. S11).24

Scheme 3. Synthesis of heterobimetallic rare-earth ethyl complexes 2 and ethyne complex 3-Y.

Scheme 3

Complexes 2 are stable under an inert atmosphere at room temperature and sparingly soluble in n-hexane, however, they readily dissolve in aromatic solvents. The solid-state molecular structures of 2 were determined by X-ray diffraction analysis (Fig. 2). The Ln–CH2CH3(terminal) bond length (2.335(7) Å for 2-Y and 2.308(8) for 2-Lu) lies within the expected range.13c,14a,b Interestingly, the bridged ethyl units of [AlEt4] display the μ-η1-Et and μ-η1:η2-Et bonding to the rare-earth center, and a Ln⋯H3C agostic interaction (Y–C–C: 85.8(3)°; Lu−C–C: 85.0(2)°) is likely to be present in the μ-η1:η2-Et bond mode.14d,e

Fig. 2. Molecular structures of complexes 2-Y (left) and 2-Lu (right) with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): 2-Y: Y(1)–C(1) 2.335(7), Y(1)–C(3) 2.512(4), Y(1)–C(4) 2.838(5), Y(1)–C(9) 2.534(3), C(1)–C(2) 1.506(4), C(3)–C(4) 1.517(7), Y(1)–C(4) 2.838(5), Y(1)–Al(1) 3.043(10), Al(1)–C(3) 2.099(4), Al(1)–C(9) 2.087(3); Y(1)–C(1)–C(2) 134.4(5), Y(1)– C(3)–C(4) 85.8(3), C(1)–Y(1)–C(9) 95.9(2), C(1)–Y(1)–C(3) 110.0(2), C(3)–Y(1)–C(9) 84.88(12), C(1)–Y(1)–Al(1) 100.50 (16). 2-Lu: Lu(1)–C(40) 2.479(3), Lu(1)–C(48) 2.308(8), Lu(1)–C(42) 2.485(4), Lu(1)–C(43) 2.805(4), C(48)–C(49) 1.522(3), C(42)– C(43) 1.534(6), Lu(1)–C(43) 2.805(4), Lu(1)–Al(1) 2.988(10), Al(1)–C(40) 2.088(4), Al(1)–C(42) 2.102(4); Lu(1)–C(48)–C(49) 133.3(6), Lu(1)–C(42)–C(43) 85.0(2), C(40)–Lu(1)–C(48) 95.6(3), C(42)–Lu(1)–C(48) 109.9(3), C(40)–Lu(1)–C(42) 86.45(12), C(48)–Lu(1)–Al(1) 99.49(18).

Fig. 2

Interestingly, the unexpected and unprecedented bridged-ethyne heterobimetallic Y/Al complex {LY(μ2-η1-Et)2(AlEt)}2(μ4-η1:η1:η2:η2-CH-CH) (3-Y) was isolated when the treatment of the yttrium dialkyl complex with AlEt3 (3 equiv) in toluene at room temperature for 72 h was carried out. However, attempts to prepare the lutetium analogue by a similar synthetic process were unsuccessful, even at reaction temperatures up to 60 °C. Certainly, 2-Y could be converted to 3-Y slowly through further hydrogen abstraction reactions along with the release of ethane. The 1H, 13C{1H} and 13C DEPT-135 NMR spectral analyses of 3-Y in C6D6 are particularly informative. The one singlet signal at δ = 2.66 ppm for 1H (89.8 ppm for 13C{1H}) is observed in the Y-bonded ethyne ligand, integrating two hydrogens, in accordance with the magnetic equivalency of the μ4-η1:η1:η2:η2-CH-CH unit. This implies high molecular symmetry and unhindered rotation of the μ4-η1:η1:η2:η2-CHCH moiety in the solvent. Meanwhile, only one set of proton signals of all ethyl groups in the [Et3Al–C2H2–AlEt3]4− moiety is observed with a broad peak (0.33 ppm for CH2) and a triplet (1.40 ppm for CH3) with integral ratios of 12:18.

Red crystals of 3-Y were crystallized from a concentrated toluene solution layered with hexane, and the X-ray structure analysis reveals a dimeric structure (Fig. 3). The Y and Al atoms are capped by the μ4-η1:η1:η2:η2-CHCH moiety. The characteristic feature of 3-Y is an ethyne bridge that forms a perpendicular bisector of the Y–Y axis. This is slightly different from the osmium complex Os2(CO)8(μ2-η1:η1-C2H2) in which the ethyne ligand is tetra-σ bonded over a square face.20d The Y–C(μ4-CHCH) bond lengths, ranging from 2.371(3) to 2.432(3) Å, are available. Interesting, the C–C bond length of the ethyne-bridge (1.550(5) Å) is a longish single C–C bond. This may be attributed to the generated steric hindrance of two AlEt3 stabilization with a highly polarized YCHCHY unit, which ultimately leads to the long μ4-η1:η1:η2:η2-coordinated C–C bond. Until now, as far as we are aware, 3-Y represents the first example of a well-defined rare-earth ethyne complex.

Fig. 3. Molecular structure of 3-Y with thermal ellipsoids at 30% probability. All of the hydrogen atoms (except for H1 and H2) are omitted for clarity. Selected bond distances (Å): Y(1)–C(1) 2.432(3), Y(1)–C(2) 2.371(3), Y(2)–C(1) 2.377(3), Y(2)–C(2) 2.405(3), C(1)–C(2) 1.550(5), Al(1)–C(1) 1.976(3), Al(2)–C(2) 1.977(4); C(1)–Y(1)–C(2) 37.62(11), C(1)–C(2)–Y(1) 73.36(16), C(1)–C(2)–Al(2) 134.0(2), C(2)–C(1)–Al(1) 133.3(2).

Fig. 3

Subsequently, when four equivalents of AlEt3 were used in the reaction with LY(CH2C6H4NMe2-o)2 in toluene at room temperature, unfortunately, the isolation of major products was unsuccessful. Unexpectedly, the mononuclear heterobimetallic ethylene complex LY(μ3-η1:η1:η2-C2H4)[(μ21-Et)(AlEt2) (μ21-Et)2(AlEt)] (4-Y, 81%) was obtained while the reaction mixture was treated at 50 °C for 24 h (Scheme 4). However, we just separated out 2-Lu as a major product when the reaction of the lutetium dialkyl complex with AlEt3 (4 equiv) was treated under the same conditions. To get more insights into the formation process of 4-Y, the same reaction was carried out at −10 °C for 3 h which gave a heterobimetallic Y/Al complex LY[(μ2-η1-Et)2(AlEt2)]2 (5-Y, 92%). In the NMR spectra of 5-Y, only one set of signals of the tetraethylaluminate moieties is observed in C6D6 at room temperature13d (Fig. S23–S24), which is also similar to the [AlMe4] ligands.7b,23 Crucially, 5-Y could be transformed into 4-Y in toluene at 50 °C for 24 h with the release of ethane through the β-hydrogen abstraction reaction25 (Fig. S25). It is well established that 5-Y is a crucial intermediate in the formation of 4-Y. A broad singlet at δ = 0.81 ppm in the 1H NMR spectrum of 4-Y is assignable to the ethylene moiety of the type YCH2CH2Y, integrating to four hydrogens, which is comparable to the ethylene resonance found for the lanthanum complex (AlEt4)La{(μ-Et)(AlEt2)}2(μ-C2H4)17b (1H NMR: 0.81 ppm in C6D6). However, these signals shifted markedly compared to the ethyne resonance found for 3-Y, verifying the differences in the core structural units. In the 13C{1H} NMR spectrum, the δ = 13.3 (JYC = 7 Hz) ppm is also observed as the carbon signal of the Y–CH2CH2Y moiety. Compared to 2-Y, the chemical shift of the 89Y of 4-Y (326.4 ppm, Fig. S22) toward the higher field might be attributed to the coordination of AlEt3 and increased electronegativity of the μ3-η1:η1:η2-C2H4 moiety.24

Scheme 4. Synthesis of heterobimetallic rare-earth ethyl complex 4-Y and ethylene complex 5-Y.

Scheme 4

4-Y was further characterized by X-ray diffraction analysis (Fig. 4). From structural parameters, the Y–C(μ2-C2H4) distances (2.475(9) and 2.689(9) Å) are slightly longer than in {(C5Me4SiMe2 NtBu)Sc(PMe3)}2(μ-C2H4) (2.320(9) and 2.357(9) Å) when the difference between metallic radii is considered. Besides, the C–C bond length of ethylene-bridged (1.533(13) Å) is longer that the bond length observed in {(C5Me4SiMe2NtBu)Sc(PMe3)}2(μ-η2:η2-C2H4) (1.433 (12) Å), and which is unlikely to the C Created by potrace 1.16, written by Peter Selinger 2001-2019 C distance in free ethylene (1.34 Å)26 while the length approaches a value typical of a carbon–carbon single bond, such as 1.522(2) Å in ethane.27 To our knowledge, 4-Y is the only well-defined non-Cp rare-earth ethylene complex. The molecular structure of 5-Y is also characterized by X-ray diffraction analysis (Fig. 5). The bridged ethyl units of [AlEt4] only display the μ-η1-ethyl bonding to the yttrium center, similar to previous Ln/Al heterobimetallic ethyl complexes containing [AlEt4] moieties.13a,c,e,g

Fig. 4. Molecular structure of 4-Y with thermal ellipsoids at 30% probability. All of the hydrogen atoms (except for H1 and H2) are omitted for clarity. Selected bond distances (Å) and angles (°): Y(1)–C(1) 2.689(9), Y(1)–C(2) 2.475(9), C(1)–C(2) 1.533(13), Al(1)– C(2) 2.047(10), Al(2)–C(1) 2.071(10); C(1)–Y(1)–C(2) 34.2(3), Y(1)– C(1)–C(2) 65.2(4), Y(1)–C(2)–C(1) 80.6(5), Y(1)–C(1)–Al(2) 70.3(3), Y(1)–C(2)–Al(1) 84.4(3).

Fig. 4

Fig. 5. Molecular structure of complex 5-Y with thermal ellipsoids at 30% probability except for the 2,6-(iPr)2C6H3 groups and benzyl groups in the guanidinate ligand. All hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Y(1)–C(1) 2.619(4), Y(1)–C(3) 2.572(4), Y(1)–C(9) 2.564(3), Y(1)–C(11) 2.622(8), Y(1)–N(1) 2.336(2), Y(1)–N(2) 2.299(2), Al(1)–C(5) 2.008(5), Al(1)– C(7) 2.004(4), Al(2)–C(13) 1.956(6), Al(2)–C(15) 2.024(5); C(1)–Y(1)–C(3) 78.12(12), C(1)–Y(1)–C(9) 89.45(12), C(1)–Y(1)–C(11) 165.9(2), Y(1)–C(1)–Al(1) 85.17(13), Y(1)–C(9)–Al(2) 83.92(12).

Fig. 5

DFT calculations

The formation of 1-Y, 2-Y, and 3-Y was investigated computationally at the DFT level (B3PW91 functional) including solvent and dispersion corrections (Fig. 6). The reaction begins by the electrophilic attack of the aluminum to the benzylic carbon, which occurs with almost no barrier (2.7 kcal mol−1) to form a stable intermediate (Int2). Int2 isomerizes in order to have an ethyl group in the bridging position between Y and Al. This isomerization allows the formation of Int3 with an energy cost of 14.3 kcal mol−1. This isomerization allows a kinetically facile Al–Et bond breaking (barrier of 0.6 kcal mol−1 from Int3, 14.9 kcal mol−1 from Int2). Following the intrinsic reaction coordinate, it yields an yttrium aminobenzyl/ethyl complex Int5, which further reacts in a similar fashion with a second triethylaluminium molecule. The same sequence of reaction as described previously allows the formation of a quite unstable monomeric guanidinato-yttrium diethyl complex (Int8), that can either dimerize to form 1-Y, which is thermodynamically favored by 69.1 kcal mol−1 or can further react with a third molecule of triethylaluminium to yield 2-Y, which is also thermodynamically favorable (−53.1 kcal mol−1).

Fig. 6. Computed enthalpy pathway at the DFT level for the formation of 1-Y, 2-Y, and 3-Y at room temperature. Energy is given in kcal mol−1.

Fig. 6

Interestingly, 2-Y can undergo a C–H activation reaction with a barrier of 26.3 kcal mol−1 to yield Int9, which dimerizes to form the most stable complex 3-Y accompanying C–C bond cleavage (Me–CH) and new C–C bond formation (CH–CH) (−90.2 kcal mol−1). To gain more insights into the bonding properties of the yttrium ethyne complex, DFT calculations on 3-Y were carried out. Scrutinizing the molecular orbitals indicates that the HOMO-7 and HOMO-4 are Y–C σ bonding interactions (Fig. 7). The bonding situation is further confirmed by the Natural bonding orbital (NBO) analysis and the Wiberg bond indexes (WBIs). The geometry optimization (B3PW91) of 3-Y revealed structural parameters in agreement with their experimental counterparts: the C1–C2 (1.531 Å) distance resembled the observed X-ray distances of 1.550(5) Å. Indeed, the Wiberg bond index (WBI) is 1.02 for the C1–C2, in line with the lack of π interaction in the ethyne unit. The Y–C WBI values are 0.36, 0.39, 0.41, and 0.42 respectively, further corroborating the single bond character of the C1–C2 interaction. The polarized nature of the bonds is further demonstrated and the charges carried by the ethyne carbon are −1.40 and −1.41, whereas those of the ethyne hydrogen are +0.29 and +0.29.

Fig. 7. DFT computed MOs for the yttrium ethyne complex 3-Y: (a) HOMO-7, (b) HOMO-4, (c) HOMO, (d) LUMO. Atom color code: green, yttrium; blue, nitrogen; gray, carbon; and white, hydrogen.

Fig. 7

Conclusions

In summary, we have successfully isolated and structurally characterized guanidinato-stabilized homo-metallic and heterobimetallic rare-earth ethyl complexes through transmetalation reactions. To our excitement, not only the first example of a non-Cp rare-earth ethylene complex through the β-H abstraction was isolated successfully, but also a unique well-defined rare-earth ethyne complex was obtained by the α-H abstraction and C–C σ bond metathesis process based on the mechanism studies by DFT calculations. Studies on the reaction chemistry of these hitherto unexplored μ2-CH2CH2 and μ4-CHCH moieties are underway.

Data availability

The data that support the findings of this study are available in the ESI of this article.

Author contributions

Mr Wen Jiang carried out the experiments, crystal analyses and manuscript writing. Dr Thayalan Rajeshkumar and Prof. Laurent Maron are responsible for the DFT calculation. Dr Yuejian Lin helped Wen Jiang in crystal analyses. Miss. Guo Mengyue assisted Mr Jiangwen to synthesize the raw materials. Prof. Zhang Lixin designed the experiments and revised this paper.

Conflicts of interest

The authors declare no conflict of interest.

Supplementary Material

SC-015-D3SC06599E-s001
SC-015-D3SC06599E-s002

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos 21871052). We are grateful to Prof. Xigeng Zhou and Prof Huadong Wang at Fudan University for helpful discussion. The authors acknowledge the HPCs CALcul en Midi-Pyrénées (CALMIP-EOS grant 1415).

Electronic supplementary information (ESI) available: Full experimental procedures, spectra, and analytical data. CCDC 2259604–2259609. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d3sc06599e

Notes and references

  1. (a) Zimmermann M. Anwander R. Chem. Rev. 2010;110:6194–6259. doi: 10.1021/cr1001194. [DOI] [PubMed] [Google Scholar]; (b) Edelmann F. T. Chem. Soc. Rev. 2012;41:7657–7672. doi: 10.1039/C2CS35180C. [DOI] [PubMed] [Google Scholar]; (c) Trifonov A. A. Lyubov D. M. Coord. Chem. Rev. 2017;340:10–61. doi: 10.1016/j.ccr.2016.09.013. [DOI] [Google Scholar]
  2. (a) Hou Z. Wakatsuki Y. Coord. Chem. Rev. 2002;231:1–22. doi: 10.1016/S0010-8545(02)00111-X. [DOI] [Google Scholar]; (b) Gromada J. Carpentier J. F. Mortreux A. Coord. Chem. Rev. 2004;248:397–410. doi: 10.1016/j.ccr.2004.02.002. [DOI] [Google Scholar]; (c) Nishiura M. Hou Z. Nat. Chem. 2010;2:257–268. doi: 10.1038/nchem.595. [DOI] [PubMed] [Google Scholar]; (d) Nishiura M. Guo F. Hou Z. Acc. Chem. Res. 2015;48:2209–2220. doi: 10.1021/acs.accounts.5b00219. [DOI] [PubMed] [Google Scholar]
  3. (a) Hong S. Marks T. J. Acc. Chem. Res. 2004;37:673–686. doi: 10.1021/ar040051r. [DOI] [PubMed] [Google Scholar]; (b) Muller T. E. Hultzsch K. C. Yus M. Foubelo F. Tada M. Chem. Rev. 2008;108:3795–3892. doi: 10.1021/cr0306788. [DOI] [PubMed] [Google Scholar]; (c) Lyubov D. M. Trifonov A. A. Inorg. Chem. Front. 2021;8:2965–2986. doi: 10.1039/D1QI00206F. [DOI] [Google Scholar]; (d) Ortu F. Chem. Rev. 2022;122:6040–6116. doi: 10.1021/acs.chemrev.1c00842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. (a) Aparna K. Ferguson M. Cavell R. G. J. Am. Chem. Soc. 2000;122:726–727. doi: 10.1021/ja9936114. [DOI] [Google Scholar]; (b) Mills D. P. Soutar L. Lewis W. Blake A. J. Liddle S. T. J. Am. Chem. Soc. 2010;132:14379–14381. doi: 10.1021/ja107958u. [DOI] [PubMed] [Google Scholar]; (c) Fustier M. Le Goff X. F. Le Floch P. Mézailles N. J. Am. Chem. Soc. 2010;132:13108–13110. doi: 10.1021/ja103220s. [DOI] [PubMed] [Google Scholar]; (d) Liddle S. T. Mills D. P. Wooles A. J. Chem. Soc. Rev. 2011;40:2164–2176. doi: 10.1039/C0CS00135J. [DOI] [PubMed] [Google Scholar]; (e) Fustier M. Le Goff X. F. Lutz M. Slootweg J. C. Mézailles N. Organometallics. 2015;34:63–72. doi: 10.1021/om500868a. [DOI] [Google Scholar]
  5. Dietrich H. M. Törnroos K. W. Anwander R. J. Am. Chem. Soc. 2006;128:9298–9299. doi: 10.1021/ja062523y. [DOI] [PubMed] [Google Scholar]
  6. (a) Zimmermann M. Rauschmaier D. Eichele K. Törnroos K. W. Anwander R. Chem. Commun. 2010;46:5346–5348. doi: 10.1039/C003206A. [DOI] [PubMed] [Google Scholar]; (b) Hong J. Zhang L. Yu X. Li M. Zhang Z. Zheng P. Nishiura M. Hou Z. Zhou X. Chem.–Eur. J. 2011;17:2130–2137. doi: 10.1002/chem.201002670. [DOI] [PubMed] [Google Scholar]; (c) Hong J. Zhang L. Wang K. Zhang Y. Weng L. Zhou X. Chem.–Eur. J. 2013;19:7865–7873. doi: 10.1002/chem.201300440. [DOI] [PubMed] [Google Scholar]; (d) Wang K. Luo G. Hong J. Zhou X. Weng H. Luo Y. Zhang L. Angew. Chem., Int. Ed. 2014;53:1053–1056. doi: 10.1002/anie.201307422. [DOI] [PubMed] [Google Scholar]; (e) Hong J. Li Z. Chen Z. Weng L. Zhou X. Zhang L. Dalton Trans. 2016;45:6641–6649. doi: 10.1039/C6DT00314A. [DOI] [PubMed] [Google Scholar]; (f) Tian H. Hong J. Wang K. Rosal I. Maron L. Zhou X. Zhang L. J. Am. Chem. Soc. 2018;140:102–105. doi: 10.1021/jacs.7b11032. [DOI] [PubMed] [Google Scholar]; (g) Hong J. Tian H. Zhang L. Zhou X. del Rosal I. Weng L. Maron L. Angew. Chem., Int. Ed. 2018;57:1062–1067. doi: 10.1002/anie.201711305. [DOI] [PubMed] [Google Scholar]; (h) Hollfelder C. O. Jende L. N. Dietrich H. M. Eichele K. Maichle-Mössmer C. Anwander R. Chem.–Eur. J. 2019;25:7298–7302. doi: 10.1002/chem.201901269. [DOI] [PubMed] [Google Scholar]; (i) Hollfelder C. O. Zimmermann M. Spiridopoulos C. Werner D. Törnroos K. W. Maichle-Mössmer C. Anwander R. Molecules. 2019;24:3703–3730. doi: 10.3390/molecules24203703. [DOI] [PMC free article] [PubMed] [Google Scholar]; (j) Buschmann D. A. Schumacher L. Anwander R. Chem. Commun. 2022;58:9132–9135. doi: 10.1039/D2CC03532D. [DOI] [PubMed] [Google Scholar]
  7. (a) Zimmermann M. Takats J. Kiel G. Törnroos K. W. Anwander R. Chem. Commun. 2008:612–614. doi: 10.1039/B713378B. [DOI] [PubMed] [Google Scholar]; (b) Scott J. Fan H. J. Wicker B. F. Fout A. R. Baik M. H. Mindiola D. J. J. Am. Chem. Soc. 2008;130:14438–14439. doi: 10.1021/ja806635x. [DOI] [PubMed] [Google Scholar]; (c) Litlabø R. Zimmermann M. Saliu K. Takats J. Törnroos K. W. Anwander R. Angew. Chem., Int. Ed. 2008;47:9560–9564. doi: 10.1002/anie.200803856. [DOI] [PubMed] [Google Scholar]; (d) Venugopal A. Kamps I. Bojer D. Berger R. J. F. Mix A. Willner A. Neumann B. Stammler H.-G. Mitzel N. W. Dalton Trans. 2009:5755–5765. doi: 10.1039/B905271B. [DOI] [PubMed] [Google Scholar]; (e) Korobkov I. Gambarotta S. Organometallics. 2009;28:5560–5567. doi: 10.1021/om900604h. [DOI] [Google Scholar]; (f) Huang W. Carver C. T. Diaconescu P. L. Inorg. Chem. 2011;50:978–984. doi: 10.1021/ic1016005. [DOI] [PubMed] [Google Scholar]; (g) Barisic D. Diether D. Maichle-Mössmer C. Anwander R. J. Am. Chem. Soc. 2019;141:13931–13940. doi: 10.1021/jacs.9b06879. [DOI] [PubMed] [Google Scholar]; (h) Zatsepin P. Lee E. Gu J. Gau M. R. Carroll P. J. Baik M. Mindiola D. J. J. Am. Chem. Soc. 2020;142:10143–10152. doi: 10.1021/jacs.0c02742. [DOI] [PubMed] [Google Scholar]; (i) Rieser T. E. Thim-Spöring R. Schädle D. Sirsch P. Litlabø R. Törnroos K. W. Maichle-Mössmer C. Anwander R. J. Am. Chem. Soc. 2022;144:4102–4113. doi: 10.1021/jacs.1c13142. [DOI] [PubMed] [Google Scholar]
  8. (a) Zhang W. Wang Z. Nishiura M. Xi Z. Hou Z. J. Am. Chem. Soc. 2011;133:5712–5715. doi: 10.1021/ja200540b. [DOI] [PubMed] [Google Scholar]; (b) Li T. Nishiura M. Cheng J. Li Y. Hou Z. Chem.–Eur. J. 2012;18:15079–15085. doi: 10.1002/chem.201202796. [DOI] [PubMed] [Google Scholar]
  9. (a) Li S. Wang M. Liu B. Li L. Cheng J. Wu C. Liu D. Liu J. Cui D. Chem.–Eur. J. 2014;20:15493–15498. doi: 10.1002/chem.201404809. [DOI] [PubMed] [Google Scholar]; (b) Shima T. Yanagi T. Hou Z. New J. Chem. 2015;39:7608–7616. doi: 10.1039/C5NJ00598A. [DOI] [Google Scholar]; (c) Zhou J. Li T. Maron L. Leng X. Chen Y. Organometallics. 2015;34:470–476. doi: 10.1021/om500997j. [DOI] [Google Scholar]; (d) Li T. Zhang G. Guo J. Wang S. Leng X. Chen Y. Organometallics. 2016;35:1565–1572. doi: 10.1021/acs.organomet.6b00166. [DOI] [Google Scholar]; (e) Yan F. Li S. Li L. Zhang W. Cui D. Wang M. Dou Y. Eur. J. Inorg. Chem. 2019;17:2277–2283. doi: 10.1002/ejic.201900197. [DOI] [Google Scholar]
  10. (a) Mindiola D. J. Scott J. Nat. Chem. 2011;3:15–17. doi: 10.1038/nchem.940. [DOI] [PubMed] [Google Scholar]; (b) Wang C. Zhou J. Zhao X. Maron L. Leng X. Chen Y. Chem.–Eur. J. 2016;22:1258–1261. doi: 10.1002/chem.201504725. [DOI] [PubMed] [Google Scholar]; (c) Mao W. Xiang L. Maron L. Leng X. Chen Y. J. Am. Chem. Soc. 2017;139:17759–17762. doi: 10.1021/jacs.7b11097. [DOI] [PubMed] [Google Scholar]; (d) Mao W. Xiang L. Lamsfus C. A. Maron L. Leng X. Chen Y. J. Am. Chem. Soc. 2017;139:1081–1084. doi: 10.1021/jacs.6b13081. [DOI] [PubMed] [Google Scholar]; (e) Mao W. Xiang L. Lamsfus C. A. Maron L. Leng X. Chen Y. Chin. J. Chem. 2018;36:904–908. doi: 10.1002/cjoc.201800253. [DOI] [Google Scholar]; (f) Wang C. Xiang L. Yang Y. Fang J. Maron L. Leng X. Chen Y. Chem.–Eur. J. 2018;24:5637–5643. doi: 10.1002/chem.201706147. [DOI] [PubMed] [Google Scholar]; (g) Wang C. Mao W. Xiang L. Yang Y. Fang J. Maron L. Leng X. Chen Y. Chem.–Eur. J. 2018;24:13903–13917. doi: 10.1002/chem.201802791. [DOI] [PubMed] [Google Scholar]; (h) Mao W. Wang Y. Xiang L. Peng Q. Leng X. Chen Y. Chem.–Eur. J. 2019;25:10304–10308. doi: 10.1002/chem.201902008. [DOI] [PubMed] [Google Scholar]
  11. (a) Ma W. Yu C. Chi Y. Chen T. Wang L. Yin J. Wei B. Xu L. Zhang W. Xi Z. Chem. Sci. 2017;8:6852–6856. doi: 10.1039/C7SC02018J. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Zheng Y. Cao C. Ma W. Chen T. Wu B. Yu C. Huang Z. Yin J. Hu H. Li J. Zhang W. Xi Z. J. Am. Chem. Soc. 2020;142:10705–10714. doi: 10.1021/jacs.0c01690. [DOI] [PubMed] [Google Scholar]
  12. (a) Dietrich H. M. Grove H. Törnroos K. W. Anwander R. J. Am. Chem. Soc. 2006;128:1458–1459. doi: 10.1021/ja057618z. [DOI] [PubMed] [Google Scholar]; (b) Gerber L. C. H. Le Roux E. Törnroos K. W. Anwander R. Chem.–Eur. J. 2008;14:9555–9564. doi: 10.1002/chem.200801174. [DOI] [PubMed] [Google Scholar]; (c) Bojer D. Venugopal A. Neumann B. Stammler H.-G. Mitzel N. W. Angew. Chem., Int. Ed. 2010;49:2611–2614. doi: 10.1002/anie.200906952. [DOI] [PubMed] [Google Scholar]; (d) Bojer D. Neumann B. Stammler H.-G. Mitzel N. W. Chem.–Eur. J. 2011;17:6239–6247. doi: 10.1002/chem.201002707. [DOI] [PubMed] [Google Scholar]; (e) Bojer D. Neumann B. Stammler H.-G. Mitzel N. W. Eur. J. Inorg. Chem. 2011:3791–3796. doi: 10.1002/ejic.201100425. [DOI] [Google Scholar]; (f) Deng P. Shi X. Gong X. Cheng J. Chem. Commun. 2021;57:6436–6439. doi: 10.1039/D1CC01645H. [DOI] [PubMed] [Google Scholar]; (g) Jiang W. Kong F. Rosal I. Li M. Wang K. Maron L. Zhang L. Chem. Sci. 2023;14:9154–9160. doi: 10.1039/D3SC03483F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. (a) Evans W. J. Chamberlain L. R. Ziller J. W. J. Am. Chem. Soc. 1987;109:7209–7211. doi: 10.1021/ja00257a062. [DOI] [Google Scholar]; (b) Stern D. Sabat M. Marks T. J. J. Am. Chem. Soc. 1990;112:9558–9575. doi: 10.1021/ja00182a015. [DOI] [Google Scholar]; (c) Klimpel M. G. Eppinger J. Sirsch P. Scherer W. Anwander R. Organometallics. 2002;21:4021–4023. doi: 10.1021/om020440u. [DOI] [Google Scholar]; (d) Fischbach A. Klimpel M. G. Widenmeyer M. Herdtweck E. Scherer W. Anwander R. Angew. Chem., Int. Ed. 2004;43:2234–2239. doi: 10.1002/anie.200352730. [DOI] [PubMed] [Google Scholar]; (e) Schrems M. G. Dietrich H. M. Törnroos K. W. Anwander R. Chem. Commun. 2005:5922–5924. doi: 10.1039/B512047K. [DOI] [PubMed] [Google Scholar]; (f) Fischbach A. Perdih F. Herdtweck E. Anwander R. Organometallics. 2006;25:1626–1642. doi: 10.1021/om060052i. [DOI] [Google Scholar]; (g) Sommerfeldt H. Meermann C. Schrems M. G. Törnroos K. W. Frøystein N. Miller R. J. Scheidt E. Scherer W. Anwander R. Dalton Trans. 2008:1899–1907. doi: 10.1039/B716603F. [DOI] [PubMed] [Google Scholar]
  14. (a) Fryzuk M. D. Giesbrecht G. Rettig S. J. Organometallics. 1996;15:3329–3336. doi: 10.1021/om960052q. [DOI] [Google Scholar]; (b) Gountchev T. I. Tilley T. D. Organometallics. 1999;18:2896–2905. doi: 10.1021/om9901170. [DOI] [Google Scholar]; (c) Hayes P. G. Piers W. E. Lee L. W. M. Knight L. K. Parvez M. Elsegood M. R. J. Clegg W. Organometallics. 2001;20:2533–2544. doi: 10.1021/om010131o. [DOI] [Google Scholar]; (d) MacDonald M. R. Langeslay R. R. Ziller J. W. Evans W. J. J. Am. Chem. Soc. 2015;137:14716–14725. doi: 10.1021/jacs.5b08597. [DOI] [PubMed] [Google Scholar]; (e) Culver D. B. Huynh W. Tafazolian H. Ong T. C. Conley M. P. Angew. Chem., Int. Ed. 2018;57:9520–9523. doi: 10.1002/anie.201805738. [DOI] [PubMed] [Google Scholar]
  15. Yamamoto H. Yasuda H. Yokota K. Nakamura A. Kai Y. Kasai N. Chem. Lett. 1988:1963–1966. doi: 10.1246/cl.1988.1963. [DOI] [Google Scholar]
  16. (a) Evans W. J. Champagne T. M. Giarikos D. G. Ziller J. W. Organometallics. 2005;24:570–579. doi: 10.1021/om049484o. [DOI] [Google Scholar]; (b) Evans W. J. Champagne T. M. Ziller J. W. Organometallics. 2005;24:4882–4885. doi: 10.1021/om050270w. [DOI] [Google Scholar]
  17. (a) Shapiro P. J. Schaefer W. P. Labinger J. A. Bercaw J. E. Cotter W. D. J. Am. Chem. Soc. 1994;116:4623–4640. doi: 10.1021/ja00090a011. [DOI] [Google Scholar]; (b) Dietrich H. M. Törnroos K. W. Anwander R. Angew. Chem., Int. Ed. 2011;50:12089–12093. doi: 10.1002/anie.201105251. [DOI] [PubMed] [Google Scholar]
  18. (a) Kaminsky W. Kopf J. Thirase G. Adv. Cycloaddit. 1974:1531–1533. [Google Scholar]; (b) Kaminsky W. Sinn H. Adv. Cycloaddit. 1975:424–437. [Google Scholar]; (c) Kaminsky W. Vollmer H. Adv. Cycloaddit. 1975:438–448. [Google Scholar]; (d) Kaminsky W. Kopf J. Sinn H. Vollmer H. J. Angew. Chem., Int. Ed. Engl. 1976;15:629–630. doi: 10.1002/anie.197606291. [DOI] [Google Scholar]
  19. (a) Shultz L. H. Tempel D. J. Brookhart M. J. Am. Chem. Soc. 2001;123:11539–11555. doi: 10.1021/ja011055j. [DOI] [PubMed] [Google Scholar]; (b) Dai X. Warren T. H. Chem. Commun. 2001:1998–1999. doi: 10.1039/B105244F. [DOI] [PubMed] [Google Scholar]; (c) Rasika Dias H. V. Fianchini M. Cundari T. R. Campana C. F. Angew. Chem., Int. Ed. 2008;47:556–559. doi: 10.1002/anie.200703515. [DOI] [PubMed] [Google Scholar]; (d) Wolf J. Thommes K. Briel O. Scopelliti R. Severin K. Organometallics. 2008;27:4464–4474. doi: 10.1021/om8004096. [DOI] [Google Scholar]; (e) Rasika Dias H. V. Wu J. Eur. J. Inorg. Chem. 2008:509–522. doi: 10.1002/ejic.200701055. [DOI] [Google Scholar]; (f) Segawa Y. Yamashita M. Nozaki K. Organometallics. 2009;28:6234–6242. doi: 10.1021/om9006455. [DOI] [Google Scholar]; (g) Ebrahimpour P. Haddow M. F. Wass D. F. Inorg. Chem. 2013;52:3765–3771. doi: 10.1021/ic302325u. [DOI] [PubMed] [Google Scholar]; (h) Navarro M. Alférez M. G. de Sousa M. Miranda-Pizarro J. Campos J. ACS Catal. 2022;12:4227–4241. doi: 10.1021/acscatal.1c05823. [DOI] [PMC free article] [PubMed] [Google Scholar]; (i) Maekawa M. Hayashi T. Sugimoto K. Okubo T. Kuroda-Sowa T. Dalton Trans. 2023;52:14941–14948. doi: 10.1039/D3DT02618C. [DOI] [PubMed] [Google Scholar]
  20. (a) Gervasio G. Rossetti R. Stanghellini P. L. Organometallics. 1985;4:1612–1619. doi: 10.1021/om00128a023. [DOI] [Google Scholar]; (b) Parker S. F. Dallin P. H. Keiller B. T. Ansonb C. E. Jayasooriya U. A. Phys. Chem. Chem. Phys. 1999;1:2589–2592. doi: 10.1039/A901514K. [DOI] [Google Scholar]; (c) Kiel G. Zhang Z. Takats J. Jordan R. B. Organometallics. 2000;19:2766–2776. doi: 10.1021/om0000515. [DOI] [Google Scholar]; (d) Anson C. E. Sheppard N. Pearman R. Moss J. R. Stoßel P. Koch S. Norton J. R. Phys. Chem. Chem. Phys. 2004;6:1070–1076. doi: 10.1039/B309979B. [DOI] [Google Scholar]; (e) Platts J. A. Evans G. J. S. Coogan M. P. Overgaard J. Inorg. Chem. 2007;46:6291–6298. doi: 10.1021/ic070278t. [DOI] [PubMed] [Google Scholar]
  21. (a) Durgun E. Ciraci S. Zhou W. Yildirim T. Phys. Rev. Lett. 2006;97:226102. doi: 10.1103/PhysRevLett.97.226102. [DOI] [PubMed] [Google Scholar]; (b) Wadnerkar N. Kalamse V. Chaudhari A. RSC Adv. 2012;2:8497–8501. doi: 10.1039/C2RA21543H. [DOI] [Google Scholar]
  22. Kong F. Li M. Zhou X. Zhang L. RSC Adv. 2017;7:29752–29761. doi: 10.1039/C7RA04524G. [DOI] [Google Scholar]
  23. (a) Dettenrieder N. Dietrich H. M. Schädle C. Maichle-Mössmer C. Törnroos K. W. Anwander R. Angew. Chem., Int. Ed. 2012;51:4461–4465. doi: 10.1002/anie.201200954. [DOI] [PubMed] [Google Scholar]; (b) Rong W. Wang M. Li S. Cheng J. Liu D. Cui D. Organometallics. 2018;37:971–978. doi: 10.1021/acs.organomet.7b00911. [DOI] [Google Scholar]
  24. (a) Schaverien C. J. Organometallics. 1994;13:69–82. doi: 10.1021/om00013a017. [DOI] [Google Scholar]; (b) White R. E. Hanusa T. P. Organometallics. 2006;25:5621–5630. doi: 10.1021/om060695y. [DOI] [Google Scholar]; (c) Schädle C. Fischbach A. Herdtweck E. Törnroos K. W. Anwander R. Chem.–Eur. J. 2013;19:16334–16341. doi: 10.1002/chem.201302944. [DOI] [PubMed] [Google Scholar]; (d) Lätsch L. Lam E. Copéret C. Chem. Sci. 2020;11:6724–6735. doi: 10.1039/D0SC02321C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bertus P. Organometallics. 2019;38:4171–4182. doi: 10.1021/acs.organomet.9b00509. [DOI] [Google Scholar]
  26. Cotton F. A. Dikarev E. V. Petrukhina M. A. Taylor R. E. J. Am. Chem. Soc. 2001;123:5831–5832. doi: 10.1021/ja0160750. [DOI] [PubMed] [Google Scholar]
  27. Harmony M. D., Chapter 1 Molecular Structure Determination from Spectroscopic Data Using Scaled Moments of Inertia, in Equilibrium Structural Parameters, ed. J. R. Durig, Elsevier, Oxford, U.K., Vibra-tional Spectra and Structure, 1999, vol. 24, pp. 1–83 [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

SC-015-D3SC06599E-s001
SC-015-D3SC06599E-s002

Data Availability Statement

The data that support the findings of this study are available in the ESI of this article.


Articles from Chemical Science are provided here courtesy of Royal Society of Chemistry

RESOURCES