Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Jan;61(1):1–6. doi: 10.1104/pp.61.1.1

No Effect of 5-Fluorouracil on the Properties of Purified α-Amylase from Barley Half-seeds 1

Shirley J Rodaway 1,2, Hans Kende 1
PMCID: PMC1091784  PMID: 16660217

Abstract

α-Amylase has been purified from de-embryonated seeds of barley (Hordeum vulgare L. cv. Betzes) which have been incubated on 10−6 m gibberellic acid (GA3) following 3 days of imbibition in buffer. Incubation of the half-seeds in up to 10−2 m 5-fluorouracil (5-FU) during the entire incubation period, including imbibition, had no effect on any of the following characteristics of purified α-amylase: thermal stability in the absence of calcium, molecular weight of the enzyme, isozyme composition, specific activity, or the amount of α-amylase synthesized by the aleurone tissue. The synthesis of rRNA and tRNA was strongly inhibited by 5-FU, indicating that the analog had entered the aleurone cells. These results are not in agreement with those of Carlson (Nature New Biology 237: 39-41 [1972]) who found that treatment of barley aleurone with 10−4 m 5-FU prior to the addition of GA3 resulted in decreased thermal stability of GA3-induced α-amylase and who interpreted this as evidence that the mRNA for α-amylase was synthesized during the imbibition of the aleurone tissue and independently of gibberellin action. Results of the present experiments indicate that the thermal stability of highly purified α-amylase is not altered by treatment of barley half-seeds with 5-FU, and that 5-FU cannot be used as a probe to examine the timing of α-amylase mRNA synthesis.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson P. S. Notes on the mechanism of action of gibberellic acid. Nat New Biol. 1972 May 10;237(71):39–41. doi: 10.1038/newbio237039a0. [DOI] [PubMed] [Google Scholar]
  2. Chrispeels M. J., Varner J. E. Gibberellic Acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 1967 Mar;42(3):398–406. doi: 10.1104/pp.42.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  4. Gleason M. K., Fraenkel-Conrat H. Biological consequences of incorporation of 5-fluorocytidine in the RNA of 5-fluorouracil-treated eukaryotic cells. Proc Natl Acad Sci U S A. 1976 May;73(5):1528–1531. doi: 10.1073/pnas.73.5.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ho D. T., Varner J. E. Hormonal control of messenger ribonucleic acid metabolism in barley aleurone layers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4783–4786. doi: 10.1073/pnas.71.12.4783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ingle J. Nucleic acid and protein synthesis associated with the induction of nitrate reductase activity in radish cotyledons. Biochem J. 1968 Aug;108(5):715–724. doi: 10.1042/bj1080715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacobsen J. V., Scandalios J. G., Varner J. E. Multiple forms of amylase induced by gibberellic acid in isolated barley aleurone layers. Plant Physiol. 1970 Apr;45(4):367–371. doi: 10.1104/pp.45.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Key J. L. Effect of purine and pyrimidine analogues on growth and RNA metabolism in the soybean hypocotyl-the selective action of 5-fluorouracil. Plant Physiol. 1966 Oct;41(8):1257–1264. doi: 10.1104/pp.41.8.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOYTER A., SCHRAMM M. The glycogen-amylase complex as a means of obtaining highly purified alpha-amylases. Biochim Biophys Acta. 1962 Dec 4;65:200–206. doi: 10.1016/0006-3002(62)91039-9. [DOI] [PubMed] [Google Scholar]
  10. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Varner J. E., Mense R. M. Characteristics of the process of enzyme release from secretory plant cells. Plant Physiol. 1972 Feb;49(2):187–189. doi: 10.1104/pp.49.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wilkinson D. S., Pitot H. C. Inhibition of ribosomal ribonucleic acid maturation in Novikoff hepatoma cells by 5-fluorouracil and 5-fluorouridine. J Biol Chem. 1973 Jan 10;248(1):63–68. [PubMed] [Google Scholar]
  13. Yomo H., Varner J. E. Hormonal control of a secretory tissue. Curr Top Dev Biol. 1971;6(6):111–144. doi: 10.1016/s0070-2153(08)60639-0. [DOI] [PubMed] [Google Scholar]
  14. Zwar J. A., Jacobsen J. V. A Correlation between a Ribonucleic Acid Fraction Selectively Labeled in the Presence of Gibberellic Acid and Amylase Synthesis in Barley Aleurone Layers. Plant Physiol. 1972 Jun;49(6):1000–1006. doi: 10.1104/pp.49.6.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES