Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Jan;61(1):17–19. doi: 10.1104/pp.61.1.17

Dependence of Phytochrome Action in Seeds on Membrane Organization

Sterling B Hendricks 1, Raymond B Taylorson 1
PMCID: PMC1091787  PMID: 16660228

Abstract

Germination of Amaranthus retroflexus L. seeds imbibed at 40 C is enhanced by establishing the active form of phytochrome before a reduction in temperature to <32 C. The half-time for effectiveness of the lower temperature is about 8 min at 15 C. Isolated membrane fragments of A. retroflexus seeds associated with the fluorescent probe 1,8-anilino-naphthalene sulfonate (ANS) increase in structural order as the temperature is lowered through the 32 C region. The germination response is decreased by the membrane-disruptive substances tris, octonoate, and ethanol. The results show that phytochrome activity is associated with an organized membrane. By using ANS with membrane fragments from Setaria faberi Herrm. seeds, leakage of amino acid was found to be enhanced at temperatures >32 C by a transition in the plasmalemma.

Full text

PDF
17

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hendricks S. B., Borthwick H. A. The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2125–2130. doi: 10.1073/pnas.58.5.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hendricks S. B., Taylorson R. B. Variation in germination and amino Acid leakage of seeds with temperature related to membrane phase change. Plant Physiol. 1976 Jul;58(1):7–11. doi: 10.1104/pp.58.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jacobson K., Papahadjopoulos D. Effect of a phase transition on the binding of 1-anilino-8-naphthalenesulfonate to phospholipid membranes. Biophys J. 1976 Jun;16(6):549–560. doi: 10.1016/S0006-3495(76)85710-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lee A. G. Model for action of local anaesthetics. Nature. 1976 Aug 12;262(5569):545–548. doi: 10.1038/262545a0. [DOI] [PubMed] [Google Scholar]
  5. Mackenzie J. M., Jr, Coleman R. A., Briggs W. R., Pratt L. H. Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc Natl Acad Sci U S A. 1975 Mar;72(3):799–803. doi: 10.1073/pnas.72.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Miller G. M., John J. B. Membrane-surfactant Interactions in Lipid Micelles Labeled with l-Anilino-8-naphthalenesulfonate. Plant Physiol. 1974 Oct;54(4):527–531. doi: 10.1104/pp.54.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. TSO T. C. PLANT-GROWTH INHIBITION BY SOME FATTY ACIDS AND THEIR ANALOGUES. Nature. 1964 May 2;202:511–512. doi: 10.1038/202511a0. [DOI] [PubMed] [Google Scholar]
  8. Taylorson R. B., Hendricks S. B. Changes in Phytochrome Expressed by Germination of Amaranthus retroflexus L. Seeds. Plant Physiol. 1971 May;47(5):619–622. doi: 10.1104/pp.47.5.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wunderlich F., Ronai A., Speth V., Seelig J., Blume A. Thermotropic lipid clustering in tetrahymena membranes. Biochemistry. 1975 Aug 26;14(17):3730–3735. doi: 10.1021/bi00688a002. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES