Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Jan;61(1):20–24. doi: 10.1104/pp.61.1.20

Leucine: tRNA Ligase from Cultured Cells of Nicotiana tabacum var. Xanthi

Evidence for de Novo Synthesis and for Loss of Functional Enzyme Molecules 1

Nigel R Gore 1,2, John L Wray 1,3
PMCID: PMC1091788  PMID: 16660229

Abstract

Leucine:tRNA ligase was assayed in extracts from cultured tobacco (Nicotiana tabacum) XD cells by measuring the initial rate of aminoacylation of transfer RNA with l-[4,5-3H]leucine. Transfer RNA was purified from tobacco XD cells after the method of Vanderhoef et al. (Phytochemistry 9: 2291-2304). The buoyant density of leucine:tRNA ligase from cells grown for 100 generations in 2.5 mm [15N]nitrate and 30% deuterium oxide was 1.3397. After transfer of cells into light medium (2.5 mm [14N]nitrate and 100% H2O) the ligase activity increased and the buoyant density decreased with time to 1.3174 at 72 hours after transfer. It was concluded that leucine:tRNA ligase molecules were synthesized de novo from light amino acids during the period of activity increase. The width at half-peak height of the enzyme distribution profiles following isopycnic equilibrium centrifugation in caesium chloride remained constant at all times after transfer into light medium providing evidence for the loss of preexisting functional ligase molecules. It was concluded that during the period of activity increase the cellular level of enzyme activity was determined by a balance between de novo synthesis and the loss of functional enzyme molecules due to either inactivation or degradation.

Full text

PDF
20

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. W., Fowden L. A Study of the Aminoacyl-sRNA Synthetases of Phaseolus vulgaris in Relation to Germination. Plant Physiol. 1969 Jan;44(1):60–68. doi: 10.1104/pp.44.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. B., Cherry J. H. Differences in leucyl-transfer rna's and synthetase in soybean seedlings. Proc Natl Acad Sci U S A. 1969 Jan;62(1):202–209. doi: 10.1073/pnas.62.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bick M. D., Liebke H., Cherry J. H., Strehler B. L. Changes in leucyl- and tyrosyl-tRNA of soybean cotyledons during plant growth. Biochim Biophys Acta. 1970 Mar 19;204(1):175–182. doi: 10.1016/0005-2787(70)90500-9. [DOI] [PubMed] [Google Scholar]
  4. Bick M. D., Strehler B. L. Leucyl transfer RNA synthetase changes during soybean cotyledon senescence. Proc Natl Acad Sci U S A. 1971 Jan;68(1):224–228. doi: 10.1073/pnas.68.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burkard G., Guillemaut P., Weil J. H. Comparative studies of the tRNA's and the aminoacyl-tRNA synthetases from the cytoplasm and the chloroplasts of Phaseolus vulgaris. Biochim Biophys Acta. 1970 Nov 12;224(1):184–198. doi: 10.1016/0005-2787(70)90632-5. [DOI] [PubMed] [Google Scholar]
  6. Cowles J. R., Key J. L. Changes in certain aminoacyl transfer ribonucleic Acid synthetase activities in developing pea roots. Plant Physiol. 1973 Jan;51(1):22–25. doi: 10.1104/pp.51.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Filner P. Regulation of nitrate reductase in cultured tobacco cells. Biochim Biophys Acta. 1966 May 5;118(2):299–310. doi: 10.1016/s0926-6593(66)80038-3. [DOI] [PubMed] [Google Scholar]
  8. HU A. S., BOCK R. M., HALVORSON H. O. Separation of labeled from unlabeled proteins by equilibrium density gradient sedimentation. Anal Biochem. 1962 Dec;4:489–504. doi: 10.1016/0003-2697(62)90129-x. [DOI] [PubMed] [Google Scholar]
  9. Hall T. C., Tao K. L. Rates of aminoacyl-transfer-ribonucleic acid synthesis in vivo and in vitro by bean leaves. Biochem J. 1970 May;117(5):853–859. doi: 10.1042/bj1170853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Nathan I., Richmond A. Leucyl-transfer ribonucleic acid synthetase in senescing tobacco leaves. Biochem J. 1974 May;140(2):169–173. doi: 10.1042/bj1400169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neihardt F. C., Parker J., McKeever W. G. Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells. Annu Rev Microbiol. 1975;29:215–250. doi: 10.1146/annurev.mi.29.100175.001243. [DOI] [PubMed] [Google Scholar]
  13. Peterson P. J. Amino acid selection in protein biosynthesis. Biol Rev Camb Philos Soc. 1967 Nov;42(4):552–613. doi: 10.1111/j.1469-185x.1967.tb01530.x. [DOI] [PubMed] [Google Scholar]
  14. Pine M. J. Metabolic control of intracellular proteolysis in growing and resting cells of Escherichia coli. J Bacteriol. 1966 Oct;92(4):847–850. doi: 10.1128/jb.92.4.847-850.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quail P. H., Scandalios J. G. Turnover of genetically defined catalase isozymes in maize. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1402–1406. doi: 10.1073/pnas.68.7.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  17. Sueoka N., Kano-Sueoka T. Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol. 1970;10:23–55. doi: 10.1016/s0079-6603(08)60560-7. [DOI] [PubMed] [Google Scholar]
  18. Widholm J. M. Anthranilate synthetase from 5-methyltryptophan-susceptible and -resistant cultured Daucus carota cells. Biochim Biophys Acta. 1972 Aug 18;279(1):48–57. doi: 10.1016/0304-4165(72)90240-1. [DOI] [PubMed] [Google Scholar]
  19. Widholm J. M. Cultured Nicotiana tabacum cells with an altered anthranilate synthetase which is less sensitive to feedback inhibition. Biochim Biophys Acta. 1972 Jan 28;261(1):52–58. doi: 10.1016/0304-4165(72)90312-1. [DOI] [PubMed] [Google Scholar]
  20. Willetts N. S. Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem J. 1967 May;103(2):453–461. doi: 10.1042/bj1030453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams L. S., Neidhardt F. C. Synthesis and inactivation of aminoacyl-transfer RNA synthetases during growth of Escherichia coli. J Mol Biol. 1969 Aug 14;43(3):529–550. doi: 10.1016/0022-2836(69)90357-x. [DOI] [PubMed] [Google Scholar]
  22. Yang Ning-Sun, Scandalios J. G. De novo synthesis and developmental control of the multiple gene-controlled malate dehydrogenase isozymes in maize scutella. Biochim Biophys Acta. 1975 Apr 19;384(2):293–306. doi: 10.1016/0005-2744(75)90031-5. [DOI] [PubMed] [Google Scholar]
  23. Zielke H. R., Filner P. Synthesis and turnover of nitrate reductase induced by nitrate in cultured tobacco cells. J Biol Chem. 1971 Mar 25;246(6):1772–1779. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES