Abstract
Osmotic regulation in the flagellate Ochromonas malhamensis Pringsheim is mainly mediated by changes in the pool size of α-galactosyl-(1 → 1)-glycerol (isofloridoside). Isofloridoside phosphate synthase, a regulated key enzyme responsible for the formation of isofloridoside phosphate, appears to exist as an inactive proenzyme which can be activated by incubation of crude cell extracts with endogenous or exogenous proteases.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Holzer H., Duntze W. Metabolic regulation by chemical modification of enzymes. Annu Rev Biochem. 1971;40:345–374. doi: 10.1146/annurev.bi.40.070171.002021. [DOI] [PubMed] [Google Scholar]
- Kauss H., Quader H. In vitro activation of a galactosyl transferase involved in the osmotic regulation of ochromonas. Plant Physiol. 1976 Sep;58(3):295–298. doi: 10.1104/pp.58.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauss H., Schobert B. First demonstration of UDP-GAL: sn-glycero-3-phosphoric acid 1-alpha-galactosyl-transferase and its possible role in osmoregulation. FEBS Lett. 1971 Dec 1;19(2):131–135. doi: 10.1016/0014-5793(71)80496-9. [DOI] [PubMed] [Google Scholar]
- Kauss H. Turnover of galactosylglycerol and osmotic balance in ochromonas. Plant Physiol. 1973 Dec;52(6):613–615. doi: 10.1104/pp.52.6.613. [DOI] [PMC free article] [PubMed] [Google Scholar]