Abstract
The relationships among the total water potential, osmotic potential, turgor potential, and relative water content were determined for leaves of sorghum (Sorghum bicolor [L.] Moench cvs. `RS 610' and `Shallu') with three different histories of water stress. Plants were adequately watered (control), or the soil was allowed to dry slowly until the predawn leaf water potential reached either −0.4 megapascal (MPa) (treatment A) or −1.6 MPa (treatment B). Severe soil and plant water deficits developed sooner after cessation of watering in `Shallu' than in `RS 610', but no significant differences in osmotic adjustment or tissue water relations were observed between the two cultivars. In both cultivars, the stress treatments altered the relationship between leaf water potential and relative water content, resulting in the previously stressed plants maintaining higher tissue water contents than control plants at the same leaf water potential. The osmotic potential at full turgor in the control sorghum was −0.7 MPa: stress pretreatment significantly lowered the osmotic potential to −1.1 and −1.6 MPa in stress treatments A and B, respectively. As a result of this osmotic adjustment, leaf turgor potentials at a given value of leaf water potential exceeded those of the control plants by 0.15 to 0.30 MPa in treatment A and by 0.5 to 0.65 MPa in treatment B. However, zero turgor potential occurred at approximately the same value of relative water content (94%) irrespective of previous stress history. From the relationship between turgor potential and relative water content there was an approximate doubling of the volumetric elastic modulus, i.e. a halving of tissue elasticity, as a result of stress preconditioning. The influence of stress preconditioning on the moisture release curve is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyer J. S., Potter J. R. Chloroplast response to low leaf water potentials: I. Role of turgor. Plant Physiol. 1973 Jun;51(6):989–992. doi: 10.1104/pp.51.6.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholander P. F., Hammel H. T., Hemmingsen E. A., Bradstreet E. D. HYDROSTATIC PRESSURE AND OSMOTIC POTENTIAL IN LEAVES OF MANGROVES AND SOME OTHER PLANTS. Proc Natl Acad Sci U S A. 1964 Jul;52(1):119–125. doi: 10.1073/pnas.52.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steudle E., Zimmermann U. Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 1977 Feb;59(2):285–289. doi: 10.1104/pp.59.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner N. C. Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions: II. At Low Soil Water Potential. Plant Physiol. 1974 Mar;53(3):360–365. doi: 10.1104/pp.53.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
