Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Feb;61(2):175–179. doi: 10.1104/pp.61.2.175

Plasma Membrane-associated Adenosine Triphosphatase Activity of Isolated Cortex and Stele from Corn Roots

Robert T Leonard 1, Charles W Hotchkiss 1
PMCID: PMC1091827  PMID: 16660255

Abstract

The plasma membrane fractions from separated cortex and stele of primary roots of corn (Zea mays L. WF9 × M14) contained cation ATPase activity at similar levels but with somewhat different properties. ATPase activity from cortex was optimum at pH 6.5, showed a simple Michaelis-Menten saturation with increasing ATP·Mg, and showed complex kinetic data for K+ stimulation similar in character to the kinetic data for K+-ATPase and K+ influx in primary roots. The results for cortex indicate that homogenates of primary roots are dominated by membranes from cortical cells.

ATPase activity from stele was optimum at pH 6.5 and showed another maximum at pH 9. At pH 6.5, activity from stele had properties similar to that from cortex except that the kinetics of K+ stimulation closely approached that expected for a Michaelis-Menten enzyme. At pH 9, the enzyme activity from stele was inhibited by 5 μg/ml oligomycin, suggesting that a significant portion of the activity was of mitochondrial origin. Sucrose density gradient analysis indicated some contamination of mitochondrial membranes in the plasma membrane fraction from stele. The results for stele are consistent with the view that stelar parenchyma cells are not deficient in ion pumps.

Full text

PDF
175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  2. Gilder J., Cronshaw J. A biochemical and cytochemical study of adenosine triphosphatase activity in the phloem of Nicotiana tabacum. J Cell Biol. 1974 Jan;60(1):221–235. doi: 10.1083/jcb.60.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Leonard R. T., Hotchkiss C. W. Cation-stimulated Adenosine Triphosphatase Activity and Cation Transport in Corn Roots. Plant Physiol. 1976 Sep;58(3):331–335. doi: 10.1104/pp.58.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Leonard R. T., Nagahashi G., Thomson W. W. Effect of lanthanum on ion absorption in corn roots. Plant Physiol. 1975 Mar;55(3):542–546. doi: 10.1104/pp.55.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Leonard R. T., Vanderwoude W. J. Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol. 1976 Jan;57(1):105–114. doi: 10.1104/pp.57.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Läuchli A., Spurr A. R., Epstein E. Lateral Transport of Ions into the Xylem of Corn Roots: II. Evaluation of a Stelar Pump. Plant Physiol. 1971 Aug;48(2):118–124. doi: 10.1104/pp.48.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nagahashi G., Thomson W. W., Leonard R. T. The casparian strip as a barrier to the movement of lanthanum in corn roots. Science. 1974 Feb 15;183(4125):670–671. doi: 10.1126/science.183.4125.670. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES