Abstract
In vitro nuclear protein phosphorylation is enhanced in nuclei isolated from 2,4-dichlorophenoxyacetic acid (2,4-d)-treated mature soybean (Glycine max) hypocotyl relative to nuclei from untreated tissue. Increased nuclear protein phosphorylation correlates with increased levels of nuclear protein kinase activity. These changes generally parallel previously reported 2,4-d-enhanced RNA polymerase activity of these nuclei and the in vivo levels of RNA synthesis. Phosphate incorporation represents bona fide protein phosphorylation, with 87% of the label being identified as phosphoserine and 7% as phosphothreonine. Label from [γ-32P]adenosine 5′-triphosphate is incorporated primarily into various nonhistone fractions with the greatest accumulation in loosely associated fractions (either released during incubation with ATP or removed by 0.15 m Nacl). Although electrophoretic analysis on sodium dodecyl sulfate gels shows no differences in the protein profiles of the loosely associated or sodium dodecyl sulfate-soluble nonhistone proteins, there are changes in the pattern of phosphorylation of other proteins, after 2,4-d treatment. Acid-soluble basic nuclear proteins are phosphorylated to a much lower extent than are the other nuclear protein fractions. While histone F1 is subject to slight phosphorylation when nuclei are labeled in vitro, phosphorylation of the other histones is undetectable. One acid-soluble protein shows a substantial increase in quantity and in phosphorylation after 2,4-d treatment. This protein is similar in electrophoretic mobility to pea histone F1 but its identity is unknown. Urea-acetic acid gels of the acid-soluble nuclear proteins show that auxin treatment results in increased quantities and in increased phosphorylation of various low mobility nonhistone basic nuclear proteins.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chapman K. S., Trewavas A., van Loon L. C. Regulation of the Phosphorylation of Chromatin-associated Proteins in Lemna and Hordeum. Plant Physiol. 1975 Feb;55(2):293–296. doi: 10.1104/pp.55.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y. M., Lin C. Y., Chang H., Guilfoyle T. J., Key J. L. Isolation and Properties of Nuclei from Control and Auxin-treated Soybean Hypocotyl. Plant Physiol. 1975 Jul;56(1):78–82. doi: 10.1104/pp.56.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu J. F., Thomson J., Hnilica L. S. Testicular chromatin activation in hypophysectomized rats. Biochim Biophys Acta. 1976 Jun 2;435(1):1–12. doi: 10.1016/0005-2787(76)90185-4. [DOI] [PubMed] [Google Scholar]
- Desjardins P. R., Mendelson I. M., Anderson K. M. Relationship between RNA polymerase and protein kinase activities in rat mammary gland nuclei. Can J Biochem. 1975 May;53(5):591–598. doi: 10.1139/o75-080. [DOI] [PubMed] [Google Scholar]
- Gallinaro-Matringe H., Stevenin J., Jacob M. Salt dissociation of nuclear particles containing DNA-like RNA. Distribution of phosphorylated and nonphosphorylated species. Biochemistry. 1975 Jun 3;14(11):2547–2554. doi: 10.1021/bi00682a039. [DOI] [PubMed] [Google Scholar]
- Guilfoyle T. J., Lin C. Y., Chen Y. M., Nagao R. T., Key J. L. Enhancement of soybean RNA polymerase I by auxin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):69–72. doi: 10.1073/pnas.72.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUANG R. C., BONNER J. Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1216–1222. doi: 10.1073/pnas.48.7.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingle J., Key J. L. A comparative evaluation of the synthesis of DNA-like RNA in excised and intact plant tissues. Plant Physiol. 1965 Nov;40(6):1212–1219. doi: 10.1104/pp.40.6.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson V., Shires A., Chalkley R., Granner D. K. Studies on highly metabolically active acetylation and phosphorylation of histones. J Biol Chem. 1975 Jul 10;250(13):4856–4863. [PubMed] [Google Scholar]
- Keller R. K., Socher S. H., Krall J. F., Chandra T., O'Malley B. W. Fractionation of chick oviduct chromatin: IV. Association of protein kinase with transcriptionally active chromatin. Biochem Biophys Res Commun. 1975 Sep 16;66(2):453–459. doi: 10.1016/0006-291x(75)90532-x. [DOI] [PubMed] [Google Scholar]
- Kleinsmith L. J., Allfrey V. G., Mirsky A. E. Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci U S A. 1966 May;55(5):1182–1189. doi: 10.1073/pnas.55.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinsmith L. J., Allfrey V. G. Nuclear phosphoproteins. II. Metabolism of exogenous phosphoprotein by intact nuclei. Biochim Biophys Acta. 1969 Feb 4;175(1):136–141. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langan T. A. Protein kinases and protein kinase substrates. Adv Cyclic Nucleotide Res. 1973;3:99–153. [PubMed] [Google Scholar]
- Lin C. Y., Guilfoyle T. J., Chen Y. M., Nagao R. T., Key J. L. The separation of RNA polymerases I and II achieved by fractionation of plant chromatin. Biochem Biophys Res Commun. 1974 Sep 23;60(2):498–506. doi: 10.1016/0006-291x(74)90268-x. [DOI] [PubMed] [Google Scholar]
- Lu C. Y., Koenig H. Isolation of acidic lipoproteins from brain chromatin. Their relation to the acidic nonhistone proteins. FEBS Lett. 1973 Aug 1;34(1):48–54. doi: 10.1016/0014-5793(73)80700-8. [DOI] [PubMed] [Google Scholar]
- Monahan J. J., Hall R. H. Chromatin, and gene regulation in eukaryotic cells at the transcriptional level. CRC Crit Rev Biochem. 1974 Jan;2(1):67–112. doi: 10.3109/10409237409105444. [DOI] [PubMed] [Google Scholar]
- Olson M. O., Prestayko A. W., Jones C. F., Busch H. Phosphorylation of proteins of ribosomes and nucleolar preribosomal particles from Novikoff hepatmoa ascites cells. J Mol Biol. 1974 Nov 25;90(1):161–168. doi: 10.1016/0022-2836(74)90264-2. [DOI] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Patel N. T., Holoubek V. Dependence of the composition of the protein moiety of nuclear ribonucleoprotein particles on the extent of particle purification as studied by electrophoresis including a two-dimensional procedure. Biochim Biophys Acta. 1977 Feb 16;474(4):524–535. doi: 10.1016/0005-2787(77)90073-9. [DOI] [PubMed] [Google Scholar]
- Pederson T. Proteins associated with heterogeneous nuclear RNA in eukaryotic cells. J Mol Biol. 1974 Feb 25;83(2):163–183. doi: 10.1016/0022-2836(74)90386-6. [DOI] [PubMed] [Google Scholar]
- Ralph R. K., McCombs P. J., Tener G., Wojcik S. J. Evidence for modification of protein phosphorylation by cytokinins. Biochem J. 1972 Dec;130(4):901–911. doi: 10.1042/bj1300901a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Carrillo A., Wangh L. J., Allfrey V. G. Processing of newly synthesized histone molecules. Science. 1975 Oct 10;190(4210):117–128. doi: 10.1126/science.1166303. [DOI] [PubMed] [Google Scholar]
- SCHAFFER N. K., MAY S. C., Jr, SUMMERSON W. H. Serine phosphoric acid from diisopropylphosphoryl chymotrypsin. J Biol Chem. 1953 May;202(1):67–76. [PubMed] [Google Scholar]
- Sato T., Ishikawa K., Ogata K. Characterization of ribonucleoprotein particles released from isolated nuclei of regenerating rat liver in two different in vitro systems. Biochim Biophys Acta. 1977 Feb 16;474(4):536–548. doi: 10.1016/0005-2787(77)90074-0. [DOI] [PubMed] [Google Scholar]
- Schendel P. F., Wells R. D. The synthesis and purification of (gamma-32P)-adenosine triphosphate with high specific activity. J Biol Chem. 1973 Dec 10;248(23):8319–8321. [PubMed] [Google Scholar]
- Schwartz L. B., Roeder R. G. Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase I from the mouse myeloma, MOPC 315. J Biol Chem. 1974 Sep 25;249(18):5898–5906. [PubMed] [Google Scholar]
- Shea M., Kleinsmith L. J. Template-specific stimulation of RNA synthesis by phosphorylated non-histone chromatin proteins. Biochem Biophys Res Commun. 1973 Jan 23;50(2):473–477. doi: 10.1016/0006-291x(73)90864-4. [DOI] [PubMed] [Google Scholar]
- Smith D. L., Chen C. C., Bruegger B. B., Holtz S. L., Halpern R. M., Smith R. A. Characterization of protein kinases forming acid-labile histone phosphates in Walker-256 carcinosarcoma cell nuclei. Biochemistry. 1974 Aug 27;13(18):3780–3785. doi: 10.1021/bi00715a025. [DOI] [PubMed] [Google Scholar]
- Spiker S. Identification of histones F2b and F1 in stained gels. J Chromatogr. 1976 Nov 17;128(1):244–248. doi: 10.1016/s0021-9673(00)84064-9. [DOI] [PubMed] [Google Scholar]
- Spiker S., Key J. L., Wakim B. Identification and fractionation of plant histones. Arch Biochem Biophys. 1976 Oct;176(2):510–518. doi: 10.1016/0003-9861(76)90194-6. [DOI] [PubMed] [Google Scholar]
- Teissere M., Penon P., Ricard J. Hormonal control of chromatin availability and of the activity of purified RNA polymerases in higher plants. FEBS Lett. 1973 Feb 15;30(1):65–70. doi: 10.1016/0014-5793(73)80620-9. [DOI] [PubMed] [Google Scholar]
- Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
- van Loon L. C., Trewavas A., Chapman K. S. Phosphorylation of Chromatin-associated Proteins in Lemna and Hordeum. Plant Physiol. 1975 Feb;55(2):288–292. doi: 10.1104/pp.55.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]

