Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Mar;61(3):323–326. doi: 10.1104/pp.61.3.323

Cation Pretreatment Effects on Nitrate Uptake, Xylem Exudate, and Malate Levels in Wheat Seedlings 1

William B Frost 1, Dale G Blevins 1,2, Neal M Barnett 1
PMCID: PMC1091859  PMID: 16660284

Abstract

Week-old wheat seedlings absorbed at least 40% NO3 from NaNO3 when preloaded with K+ than when preloaded with Na+ or Ca2+. Cultures of Triticum vulgare L. cv. Arthur were grown for 5 days on 0.2 mm CaSO4, pretreated for 48 hours with either 1 mm CaSO4, K2SO4, or Na2SO4, and then transferred to 1 mm NaNO3. All solutions contained 0.2 mm CaSO4. Shoots of K+-preloaded plants accumulated three times more NO3 than shoots of the other two treatments. Initially, the K+-preloaded plants contained 10-fold more malate than either Na+- or Ca2+-preloaded seedlings. During the 48-hour treatment with NaNO3, malate in both roots and shoots of the K+-preloaded seedlings decreased. Seedlings preloaded with K+ reduced 25% more NO3 than those preloaded with either Na+ or Ca2+. These experiments indicate that K+ enhanced NO3 uptake and reduction even though the absorption of K+ and NO3 were separated in time. Xylem exudate of K+-pretreated plants contained roughly equivalent concentrations of K+ and NO3, but exudate from Na+ and Ca2+-pretreated plants contained two to four times more NO3 than K+. Therefore K+ is not an obligatory counterion for NO3 transport in xylem.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blevins D. G., Hiatt A. J., Lowe R. H. The Influence of Nitrate and Chloride Uptake on Expressed Sap pH, Organic Acid Synthesis, and Potassium Accumulation in Higher Plants. Plant Physiol. 1974 Jul;54(1):82–87. doi: 10.1104/pp.54.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kirkby E. A., Mengel K. Ionic balance in different tissues of the tomato plant in relation to nitrate, urea, or ammonium nutrition. Plant Physiol. 1967 Jan;42(1):6–14. doi: 10.1104/pp.42.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Litchfield M. H. The automated analysis of nitrite and nitrate in blood. Analyst. 1967 Feb;92(91):132–136. doi: 10.1039/an9679200132. [DOI] [PubMed] [Google Scholar]
  4. Neyra C. A., Hageman R. H. Relationships between Carbon Dioxide, Malate, and Nitrate Accumulation and Reduction in Corn (Zea mays L.) Seedlings. Plant Physiol. 1976 Dec;58(6):726–730. doi: 10.1104/pp.58.6.726. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES