Abstract
A series of novel thieno[2,3-b]pyridines linked to N-aryl carboxamides or (carbonylphenoxy)-N-(aryl)acetamides, as well as bis(thieno[2,3-b]pyridines) linked to piperazine core via methanone or carbonylphenoxyethanone units, were synthesized by treating the appropriate chloroacetyl- or bis-bromoacetyl derivatives with 2-mercaptonicotinonitrile derivatives in ethanolic sodium ethoxide at reflux. The spectral data were used to determine the compositions of novel compounds.
Introduction
Thieno[2,3-b]pyridine derivatives occupy a unique position and have received considerable attention due to their diverse pharmacological activities, which include anticancer,1,2 antiviral,2,3 anti-inflammatory,4,5 antimicrobial,5,6 antidiabetic,7,8 and osteogenic9 antiproliferative activity. Furthermore, they can be used as adenosine A1 receptor ligands for the potential treatment of epilepsy10 and as antiplatelet drugs.11 Several research publications on this motif as a core in prospective small-molecule medicines have been published (Figure 1).12,13 Furthermore, several drugs on the market contain thienopyridine nuclei. Prasugrel, and clopidogrel, for example, have all been reported as antiplatelet drugs (Figure 1).14 The amide group can be found in a wide range of drugs, and many industrial materials, such as polymers, detergents, and lubricants.15,16 Their biological activities include antitumor, anthelmintic, antispasmodic, antifungal, antibacterial, insecticidal, and herbicidal properties.17 In terms of medicine, roughly one-quarter of all marketed drugs (and two-thirds of all drug candidates) contain at least one amide bond.18 Furthermore, molecules with an acetamide linkage or its derivatives as core structures have received significant attention due to their potential therapeutic applications as anti-inflammatory,19 anticancer,20 analgesic,21 antimicrobial,21−23 anticonvulsant,24 antituberculosis agents,25 and anti-COVID-19 agents.26 Some acetamide derivatives, such as paracetamol V27 (Figure 1), have been shown to have analgesic or sedative properties. Furthermore, AdipoRon VI28 (Figure 1), a phenoxyacetamide drug, has received considerable attention as a potential treatment for cardiovascular disease, obesity, diabetes, and nonalcoholic fatty liver disease. Moreover, compounds with a 2-phenoxy-N-phenylacetamide core structure have garnered a lot of attention due to their antibacterial, antiparasitic, anticancer, and antiviral properties.23,29 The piperazine scaffold has also been reported to exhibit antibacterial, antituberculosis, anticancer, antiviral, anti-inflammatory, antipsychotic, anti-Alzheimer’s, antifungal, antidiabetic, as well as analgesic, anticonvulsant, and antimalarial properties.30−39Figure 1 depicts many medications that have a piperazine core as a fundamental structural feature. Furthermore, over the last few decades, the concept of molecular hybridization has received a lot of attention in the field of drug design. This tool combines two pharmacophoric moieties from different classes of bioactive molecules to create new hybrid molecules with improved biological efficacy and resistance.40,41
Figure 1.
Some medications that have thieno[2,3-b]pyridine, acetamide, phenoxyacetamide, and piperazine as fundamental structural features.
Considering these findings and our continuous interest in developing heterocycles with improved pharmacophoric characteristics,42−80 we report the design and synthesis of new hybrid compounds that comprise thieno[2,3-b]pyridines linked to piperazine or amide-containing moieties.
Results and Discussion
As precursors for our targeted synthesis, we chose 2-chloro-N-arylylacetamides 1a,b which were prepared by stirring the appropriate arylamine with 2-chloroacetyl chloride under basic conditions. The synthesis of novel thieno[2,3-b]pyridine-2-carboxamide derivatives 4a–d was performed by the reaction of 6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile 2a,b with 1a,b in ethanol containing sodium ethoxide (Scheme 1). The reaction proceeded via the initial formation of 2-((3-cyano-6-phenylpyridin-2-yl)thio)-N-phenylacetamide intermediates 3a–d. The latter compound could be isolated upon treatment of 2a,b with the appropriate 2-chloro-N-arylylacetamides derivatives 1a,b in ethanol containing piperidine at reflux. Heating of 3a–d with sodium ethoxide in ethanol at reflux afforded 4a–d in good yields.
Scheme 1. Synthesis of Thienopyridine Linked to N-Aryl Carboxamides 4a–d.
The structures of compounds 4a–d were established based on their spectral data and elemental analyses. Thus, the mass spectrum of 3c as a representative example reveals a molecular ion peak at m/z 393 that corresponds to its molecular mass. Compound 4c’s IR spectra revealed the existence of absorption bands at 3427, 3278, and 1640 cm–1, which correspond to the amino group and carbonyl band, respectively. The effective ring closure of compound 3c into 4c is confirmed by the absence of absorption bands typical of the cyano group in compound 4c and the presence of this band in compound 3c. Furthermore, the ring closure of 3c to 4c is further supported by the 1H NMR spectra. Therefore, compound 3c showed a singlet signal integrating two protons at δ 4.26 ppm, indicating the existence of SCH2 protons, but compound 4c lacks this signal. The remaining protons were seen at the anticipated integral values and chemical shifts (see the Experimental Section). The scope of our research was expanded to encompass the synthesis of novel thieno[2,3-b]pyridines coupled to N-arylacetamide units via carbonylphenoxy groups. Bromoacetyl derivatives 7a,b(81) were employed as flexible precursors for this purpose. They were successfully obtained from the corresponding 2-(acetylylphenoxy)-N-arylacetamides 6a,b upon treatment with N-bromosuccinimide (NBS) in the presence of p-TsOH. Compounds 6a,b(81) were produced via the reaction of the potassium salt of para-hydroxyacetophenone 5 with the corresponding 2-chloro-N-arylacetamide derivatives 1a,b in boiling DMF (Scheme 2).
Scheme 2. Synthesis of α-Bromoketones Linked to N-Arylacetamide 7a,b.
Thus, the reaction of 6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitriles 2a,b with 2-(4-(2-bromoacetyl)phenoxy)-N-arylacetamides 7a,b in ethanol containing piperidine at reflux afforded 2-(4-(2-((3-cyano-6-phenylpyridin-2-yl)thio)acetyl)phenoxy)-N-arylacetamide intermediates 8a–d in 81–88% yields. Cyclization of the latter compounds in an ethanolic solution containing sodium ethoxide at reflux afforded the corresponding thienopyridine derivatives 9a–d as sodium salts in 81–84% yields (Scheme 3).
Scheme 3. Synthesis of Thienopyridines (Sod. Salts) Linked to N-Arylacetamide 9a–d.
It is worth mentioning that cyclization of 6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitriles 2a,b with 2-(4-(2-bromoacetyl)phenoxy)-N-arylacetamides 7a,b in an ethanolic solution containing K2CO3 at reflux afforded the corresponding thienopyridine derivatives 9′b–d in 76–77% yields (Figure 2).
Figure 2.
Structures of thienopyridines linked to N-arylacetamide.
The 1H NMR spectrum of 9′b displayed a singlet signal at 4.81 ppm for the −OCH2 in addition to a signal at 10.19 ppm for the NH group. The other signals appeared at their expected positions. On the other hand, the disappearance of the −OCH2 signal from the spectra of compounds 9a–d can be observed.
Our investigation was expanded to encompass the preparation of bis(thieno[2,3-b]pyridines) 12a,b connected to the piperazine ring via carbonyl groups. In the first step, 1,1′-(piperazine-1,4-diyl)bis(2-chloroethan-1-one) (10) was prepared via the reaction of piperazine with two mole equivalents of chloroacetyl chloride in the presence of anhydrous K2CO3. Subsequent reaction of compound 10 with the appropriate 6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitriles 2a,b in ethanol containing piperidine at reflux afforded bis(sulfanediyl)bis(6-phenylnicotinonitriles) 11a and 11b in 74 and 79% yields, respectively. The latter compounds underwent cyclization to give the corresponding piperazine-1,4-diylbis((3-amino-6-phenylthieno[2,3-b]pyridin-2-yl)methanones) 12a,b in 70–72% yields, respectively, upon heating in ethanolic solution containing sodium ethoxide (Scheme 4).
Scheme 4. Synthesis of Bis(thienopyridines) Linked to Piperazine Core 12a,b.
The structures of compounds 12a and 12b were established based on their spectral data and elemental analyses. Thus, compound 12a showed in its IR spectra the presence of absorption bands at 3415, 34260, and 1633 cm–1 characteristic for the amino group and the carbonyl band, respectively. The piperazine and NH2 appeared as two broad signals at 3.75 and 6.03 ppm. All other protons were seen at the expected chemical shifts and integral values (see the Experimental Section). The structures of compounds 12a and 12b were determined using their elemental analyses and spectrum data. As a result, compound 12a displayed absorption peaks in its infrared spectra at 3415, 34260, and 1633 cm–1, which are indicative of the amino group and the carbonyl band, respectively. 1H NMR revealed the piperazine and NH2 protons as two broad signals at 3.75 and 6.03 ppm. Other protons were seen at the anticipated integral values and chemical shifts (see the Experimental Section). Thieno[2,3-b]pyridines 16a,b linked to piprazine core via carbonylphenoxyacetyl linker could also be prepared in good yields starting from 1,1′-(piperazine-1,4-diyl)bis(2-(4-(2-bromoacetyl)phenoxy)ethanones) 14a,b. The latter compounds were prepared in 69–71% yields by reacting 1,1′-(piperazine-1,4-diyl)bis(2-(4-acetylphenoxy)ethanone) 13a,b with N-bromosuccinimide in the presence of p-toluenesulfonic acid (PTSA) in acetonitrile. Compounds 13a and b were successfully obtained in 77 and 79% yields, respectively, by the reaction of 1,1′-(piperazine-1,4-diyl)bis(2-chloroethanone) with the potassium salts of ortho- and para-hydroxyacetophenone 5a,b in DMF at reflux (Scheme 5). The 1H NMR spectra of 14b indicated the presence of CH2–Br protons, resonated at δ 4.82 as singlet signals integrating four protons.
Scheme 5. Synthesis of Bis(α-bromoketones) Linked to Piperazine Core 14a,b.
The interaction of the 6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitriles 2a,b with the relevant bromoacetyl derivatives 14a,b in ethanol containing piperidine at reflux yielded bis(sulfanediyl)bis(6-phenylnicotinonitriles) 15a–d in 76–78% yields (Scheme 6).
Scheme 6. Synthesis of Bis(sulfanediyl)bis(6-phenylnicotinonitriles) 15a–d.
Subsequent cyclization of 15c and 15d in ethanol containing sodium ethoxide at reflux afforded the corresponding bis(thieno[2,3-b]pyridines) 16a and 16b in 68 and 69% yields, respectively (Scheme 7). Analytical and spectral evidence confirmed the structure of 16a and 16b. Compound 16a had IR bands at 3420, 3315, 1695, and 1650 cm–1 that were representative of the NH2 and the ketonic and amide C=O groups, respectively. The 1H NMR spectra of compound 16a exhibited a singlet signal at δ 5.02, indicating the presence of OCH2 protons. Furthermore, the mass spectra of 16a revealed the appropriate molecular ion peaks at m/z = 886.
Scheme 7. Synthesis of Bis(thieno[2,3-b]pyridines) 16a and 16b.
On the other hand, an attempt to synthesize bis(thieno[2,3-b]pyridine) 17 through cyclization of 15b in ethanol containing sodium ethoxide at reflux was unsuccessful. Instead, the reactions gave 2-((benzofuran-3-ylmethyl)thio)-4,6-diphenylnicotinonitrile 19 in 82% yield (Scheme 8). It is suggested that compound 17 was formed initially and then intramolecular cyclocondensation of the methylene group with the ketonic groups at the 2-position of thienopyridine leading to the formation of the corresponding 2-bezofuranyl derivative 18 followed by hydrolysis and subsequent decarboxylation under the reaction conditions to give 19. Similar behavior of some related systems has been previously reported.82
Scheme 8. Synthesis of 2-((Benzofuran-3-ylmethyl)thio)-4,6-diphenylnicotinonitrile 19.

It is worth mentioning that treatment of 15a under similar conditions gave a mixture of nonisolable products.
A plausible mechanism of the formation of thieno[2,3-b]pyridines is outlined in Scheme 9. The reaction of the appropriate α-haloketone with the corresponding pyridinethione results in the formation of thienopyridines via an initial nucleophilic substitution reaction of the appropriate α-haloketone with the corresponding thienopyridines to give the intermediate S-alkylated product. Base-catalyzed intramolecular cyclization was used on the latter compounds to efficiently prepare the target thieno[2,3-b]pyridines via intermediates I and II. After treating pyridinethione with the appropriate α-halokeone in an ethanolic solution containing TEA in a catalytic amount, the intermediate S-alkylated product was successfully isolated.
Scheme 9. Plausible Mechanism for the Formation of Thieno[2,3-b]pyridines.
Conclusions
We established an effective synthesis of hitherto unknown thienopyridines and bis(thienopyridines) connected to arene or heteroarene via phenoxymethyl groups. The newly synthesized compounds fulfilled the “hybrid molecules” idea, which seeks to combine two potential pharmacophores in a single molecule. We think that the inclusion of two pharmacophoric units in the newly synthesized compounds will increase their biological activity. Our present study attempts to widen the use of the stated technique by synthesizing more hybrid compounds with useful biological potency.
Experimental Section
Melting points were determined in open glass capillaries with a Gallenkamp apparatus. Elemental analyses were carried out at the Microanalytical Center of Cairo University, Giza, Egypt. Infrared spectra were recorded as potassium bromide disks on a Pye Unicam SP 3-300 and Shimadzu FTIR 8101 PC infrared spectrophotometer. NMR spectra were recorded on a JEOL JNM-LA500 spectrometer, operating at 500 MHz for 1H NMR, and 125.65 MHz for 13C NMR. Chemical shifts were reported downfield from TMS (= 0) for 1H NMR. For 13C NMR, chemical shifts were reported in the scale relative to the solvent used as an internal reference. Mass spectra (EI) were obtained at 70 eV with a type Shimadzu GCMQP 1000 EX spectrometer. Analytical thin-layer chromatography was performed using precoated silica gel 60,778 plates (Fluka), and the spots were visualized with UV light at 254 nm.
General Procedure for the Synthesis of 2-((3-Cyano-4-alkyl-6-phenylpyridin-2-yl)thio)-N-(aryl)acetamide 3a–d
The proper 2-mercapto-4,6-disubstituted nicotinonitrile 2a or 2b (10 mmol) was added to a solution of 2-chloro-N-arylacetamides 1a,b (10 mmol) in ethanol (25 mL) containing 0.2 mL of TEA. The reaction mixture was heated at reflux for 3 h. The title compounds 3a–d were produced by filtering out and recrystallizing the solid that was formed after cooling from ethanol/DMF”.
2-((3-Cyano-4-methyl-6-phenylpyridin-2-yl)thio)-N-(p-tolyl)acetamide (3a)
Off-white powder (89% Yield), mp 197–199 °C; IR (cm–1): 3387 (NH), 2214 (CN), 1674 (CO); 1H NMR (DMSO): δ 2.31 (s, 3H, CH3), 2.48 (s, 3H, CH3), 4.23 (s, 2H, SCH2), 7.09 (d, J = 10 Hz, 2H, ArH), 7.28–7.48 (m, 5H, ArH), 7.80 (s, 1H, pyridine-5-H), 8.09 (d, J = 10 Hz, 2H, ArH), 10.33 (s, 1H, NH); 13C NMR: δ 20.0, 22.6, 43.5, 105.4, 122.3, 127.0, 127.7, 128.4, 129.1, 132.4, 135.8, 137.5, 146.5, 149.6, 150.0, 153.4, 170.4; MS: m/z (%) 373 (M+). Anal. Calcd For C22H19N3OS: C, 70.75; H, 5.13; N, 11.25; S, 8.58. Found: C, 70.71; H, 5.14; N, 11.23; S, 8.57%.
2-((3-Cyano-4,6-diphenylpyridin-2-yl)thio)-N-(p-tolyl)acetamide (3b)
Creamy powder (83% Yield), mp 266–268 °C; IR (cm–1): 3325 (NH), 2224 (CN), 1671 (CO); 1H NMR (DMSO): δ 2.25 (s, 3H, CH3), 4.31 (s, 2H, SCH2), 7.11 (d, J = 8.1 Hz, 2H, ArH), 7.31–7.76 (m, 10H, ArH), 7.89 (s, 1H, pyridine-5-H), 8.22 (d, J = 8.1 Hz, 2H, ArH), 10.35 (s, 1H, NH); MS: m/z (%) 435 (M+). Anal. Calcd For C27H21N3OS: C, 74.46; H, 4.86; N, 9.65; S, 7.36. Found: C, 74.48; H, 4.83; N, 9.64; S, 7.37%.
N-(4-Chlorophenyl)-2-((3-cyano-4-methyl-6-phenylpyridin-2-yl)thio)acetamide (3C)
Off-white powder (85% Yield), mp 200–202 °C; IR (cm–1): 3364 (NH), 2214 (CN), 1658 (CO); 1H NMR (DMSO): δ 2.52 (s, 3H, CH3), 4.26 (s, 2H, SCH2), 7.33 (d, J = 6.9 Hz, 2H, ArH), 7.35–7.65 (m, 5H, ArH), 7.84 (s, 1H, pyridine-5-H), 8.10 (d, J = 7.2 Hz, 2H, ArH), 10.55 (s, 1H, NH); 13C NMR: δ 20.0, 35.0, 104.6, 115.1, 117.2, 120.5, 126.8, 127.3, 128.4, 128.9, 130.5, 136.5, 138.0, 153.5, 157.7, 160.9, 166.0; MS: m/z (%) 393 (M+). Anal. Calcd For C21H16ClN3OS: C, 64.04; H, 4.09; N, 10.67; S, 8.14. Found: C, 64.02; H, 4.06; N, 10.69; S, 8.13%.
N-(4-Chlorophenyl)-2-((3-cyano-4,6-diphenylpyridin-2-yl)thio)acetamide (3d)
Creamy powder (81% Yield), mp 250–252 °C; IR (cm–1): 3331 (NH), 2221 (CN), 1667 (CO); 1H NMR (DMSO): δ 4.32 (s, 2H, SCH2), 7.33 (d, J = 8.1 Hz, 2H, ArH), 7.36–7.76 (m, 10H, ArH), 7.90 (s, 1H, pyridine-5-H), 8.20 (d, J = 8.4 Hz, 2H, ArH), 10.60 (s, 1H, NH); MS: m/z (%) 455 (M+). Anal. Calcd For C26H18ClN3OS: C, 68.49; H, 3.98; N, 9.22; S, 7.03. Found: C, 68.49; H, 3.97; N, 9.22; S, 7.01. %.
General Procedure for the Synthesis of N-Arylthieno[2,3-b]pyridine-2-carboxamide Derivatives 4a–d
A solution of 2-(3-cyanopyridin-2-ylthio)-N-arylacetamides 3a–d (10 mmol) in ethanol (25 mL) containing sodium ethoxide (10 mmol) was heated at reflux for 2 h. After cooling the reaction mixture, the solvent was vacuum-evaporated. The solid residue was collected and recrystallized from DMF to afford 4a–d”.
3-Amino-4-methyl-6-phenyl-N-(p-tolyl)thieno[2,3-b]pyridine-2-carboxamide (4a)
Yellow powder (83% Yield), mp 249–251 °C; IR (cm–1): 3441, 3289 (NH2), 1635 (CO); 1H NMR (DMSO): δ 2.25 (s, 3H, CH3), 2.84 (s, 3H, CH3), 6.95 (s, 2H, NH2), 7.11 (d, J = 10 Hz, 2H, ArH), 7.44–7.54 (m, 5H, ArH), 7.97 (s, 1H, pyridine-5-H), 8.12 (d, J = 10 Hz, 2H, ArH), 9.43 (s, 1H, NH); 13C NMR: δ 17.0, 20.9, 120.0, 121.6, 122.5, 124.1, 128.0, 128.8, 129.7, 133.1, 136.4, 142.7, 146.8, 151.5, 155.6, 166.6, 167.3; MS: m/z (%) 373 (M+). Anal. Calcd For C22H19N3OS: C, 70.75; H, 5.13; N, 11.25; S, 8.58. Found: C, 70.71; H, 5.12; N, 11.23; S, 8.55%.
3-Amino-4,6-diphenyl-N-(p-tolyl)thieno[2,3-b]pyridine-2-carboxamide (4b)
Orange powder (80% Yield), mp > 300 °C; IR (cm–1): 3448, 3291 (NH2), 1629 (CO); 1H NMR (DMSO): δ 2.38 (s, 3H, CH3), 7.34 (d, J = 8.4 Hz, 2H, ArH), 7.40–7.73 (m, 10H, ArH), 7.78 (s, 2H, NH2), 8.03 (s, 1H, pyridine-5-H), 8.22 (d, J = 8.4 Hz, 2H, ArH), 9.58 (s, 1H, NH); MS: m/z (%) 435 (M+). Anal. Calcd For C27H21N3OS: C, 74.46; H, 4.86; N, 9.65; S, 7.36. Found: C, 74.46; H, 4.85; N, 9.63; S, 7.34%.
3-Amino-N-(4-chlorophenyl)-4-methyl-6-phenylthieno[2,3-b]pyridine-2-carboxamide (4c)
Yellow powder (79% Yield), mp 240–242 °C; IR (cm–1): 3427, 3278 (NH2), 1640 (CO); 1H NMR (DMSO): δ 2.86 (s, 3H, CH3), 7.01 (s, 2H, NH2), 7.33 (d, J = 8.4 Hz, 2H, ArH), 7.47–7.72 (m, 5H, ArH), 7.97 (s, 1H, pyridine-5-H), 8.16 (d, J = 8.4 Hz, 2H, ArH), 9.60 (s, 1H, NH); 13C NMR: δ 20.2, 118.7, 122.8, 124.0, 127.0, 127.1, 128.3, 128.9, 129.8, 137.6, 138.0, 145.8, 149.2, 156.2, 159.6, 164.2; MS: m/z (%) 393 (M+). Anal. Calcd For C21H16ClN3OS: C, 64.04; H, 4.09; N, 10.67; S, 8.14. Found: C, 64.03; H, 4.09; N, 10.66; S, 8.10%.
3-Amino-N-(4-chlorophenyl)-4,6-diphenylthieno[2,3-b]pyridine-2-carboxamide (4d)
Orange powder (76% Yield), mp 267–269 °C; IR (cm–1): 3421, 3277 (NH2), 1631 (CO); 1H NMR (DMSO): δ 7.34 (d, J = 8.7 Hz, 2H, ArH), 7.49–7.72 (m, 12H, ArH, NH2), 7.78 (s, 1H, pyridine-5-H), 8.23 (d, J = 8.1 Hz, 2H, ArH), 9.21 (s, 1H, NH); MS: m/z (%) 455 (M+). Anal. Calcd For C26H18ClN3OS: C, 68.49; H, 3.98; N, 9.22; S, 7.03. Found: C, 68.49; H, 3.96; N, 9.22; S, 7.02%.
General Procedure for the Synthesis of 8a–d
The 2-mercapto-4,6-disubstituted nicotinonitrile 2a or 2b (10 mmol) was added to a solution of the appropriate 2-(2-bromoacetyl)phenoxy-N-arylcetamide 7a,b (10 mmol) in ethanol (25 mL) containing a few drops TEA. For 3 h, the reaction mixture was heated at reflux. The solid obtained upon cooling was filtered off and recrystallized from ethanol/DMF to afford the title compounds 8a–d.
2-(4-(2-((3-Cyano-4-methyl-6-phenylpyridin-2-yl)thio)acetyl)phenoxy)-N-(p-tolyl)acetamide (8a)
Colorless powder (88% Yield), mp 210–212 °C; IR (cm–1): 3460 (NH), 2214 (CN), 1674 (CO), 1643 (CO); 1H NMR (DMSO): δ 2.26 (s, 3H, CH3), 2.51 (s, 3H, CH3), 4.85 (s, 2H, SCH2), 4.94 (s, 2H, OCH2), 7.12–7.54 (m, 9H, ArH), 7.79–7.81 (m, 3H, pyridine-5-H, ArH), 8.11 (d, J = 8.1 Hz, 2H, ArH), 10.07 (s, 1H, NH); MS: m/z (%) 507 (M+). Anal. Calcd For C30H25N3O3S: C, 70.99; H, 4.96; N, 8.28; S, 6.32. Found: C, 70.97; H, 4.95; N, 8.25; S, 6.33%.
2-(4-(2-((3-Cyano-4,6-diphenylpyridin-2-yl)thio)acetyl)phenoxy)-N-(p-tolyl)acetamide (8b)
Creamy powder (85% Yield), mp 184–186 °C; IR (cm–1): 3425 (NH), 2219 (CN), 1671 (CO), 1650 (CO); 1H NMR (DMSO): δ 2.26(s, 3H, CH3), 4.87 (s, 2H, SCH2), 5.00 (s, 2H, OCH2), 7.12–7.74 (m, 14H, ArH), 7.85 (s, 1H, pyridine-5-H), 7.91 (d, J = 7.8 Hz, 2H, ArH), 8.15 (d, J = 8.7 Hz, 2H, ArH), 10.11 (s, 1H, NH); MS: m/z (%) 569 (M+). Anal. Calcd For C35H27N3O3S: C, 73.79; H, 4.78; N, 7.38; S, 5.63. Found: C, 73.77; H, 4.78; N, 7.35; S, 5.60%.
N-(4-Chlorophenyl)-2-(4-(2-((3-cyano-4-methyl-6-phenylpyridin-2-yl)thio)acetyl)phenoxy)acetamide (8C)
Colorless powder (83% Yield), mp 214–216 °C; IR (cm–1): 3464 (NH), 2215 (CN), 1670 (CO), 1658 (CO); 1H NMR (DMSO): δ 2.51 (s, 3H, CH3), 4.85 (s, 2H, SCH2), 4.94 (s, 2H, OCH2), 7.15–7.41 (m, 8H, ArH), 7.69 (d, J = 8.7 Hz, 2H, ArH), 7.79–7.81 (m, 2H, pyridine-5-H, ArH), 8.11 (d, J = 8.7 Hz, 2H, ArH), 10.30 (s, 1H, NH); MS: m/z (%) 527 (M+). Anal. Calcd For C29H22ClN3O3S: C, 65.97; H, 4.20; N, 7.96; S, 6.07. Found: C, 65.97; H, 4.21; N, 7.93; S, 6.05%.
N-(4-Chlorophenyl)-2-(4-(2-((3-cyano-4,6-diphenylpyridin-2-yl)thio)acetyl)phenoxy)acetamide (8d)
Creamy powder (81% Yield), mp 198–200 °C; IR (cm–1): 3431 (NH), 2221 (CN), 1667 (CO), 1647 (CO); 1H NMR (DMSO): δ 4.90 (s, 2H, SCH2), 5.00 (s, 2H, OCH2), 7.16–7.75 (m, 14H, ArH), 7.85 (s, 1H, pyridine-5-H), 7.90 (d, J = 7.8 Hz, 2H, ArH), 8.15 (d, J = 8.7 Hz, 2H, ArH), 10.32 (s, 1H, NH); MS: m/z (%) 589 (M+). Anal. Calcd For C34H24ClN3O3S: C, 69.20; H, 4.10; N, 7.12; S, 5.43. Found: C, 69.21; H, 4.07; N, 7.11; S, 5.41. %.
General Procedure for the Synthesis of Sodium 2-(4-(3-amino-4-alkyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-1-(p-arylamino)ethen-1-olate Derivatives 9a–d
A solution of the suitable 2-(4-(2-((3-cyano-4-alkyl-6-phenylpyridin-2-yl)thio)acetyl)phenoxy)-N-(aryl)acetamide 8a–d (10 mmol) in ethanol (25 mL) containing sodium ethoxide (10 mmol) was heated at reflux for 2 h. The solid was collected on heating to provide 9a–d.
Sodium 2-(4-(3-Amino-4-methyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-1-(p-tolylamino)ethen-1-olate (9a)
Yellow powder (83% Yield), mp > 300 °C; IR (cm–1): 3433, 3224 (NH2), 1675 (CO); 1H NMR (DMSO): δ 2.27 (s, 3H, CH3), 2.89 (s, 3H, CH3), 7.05 (d, J = 7.5 Hz, 2H, ArH), 7.09–7.77 (m, 10H, ArH), 7.84 (s, 1H, pyridine-5-H), 7.88(s, 2H, NH2), 8.17 (d, J = 6.6 Hz, 2H, ArH), 8.58 (s, 1H, NH); 13C NMR: δ 20.4, 23.6, 103.4, 113.5, 118.5, 119.6, 123.0, 127.0, 128.8, 129.7, 129.9, 130.4, 130.8, 137.4, 138.8, 146.7, 147.6, 151.6, 157.0, 161.5, 187,6; MS: m/z (%) 529 (M+). Anal. Calcd For C30H24N3NaO3S: C, 68.04; H, 4.57; N, 7.93; S, 6.05. Found: C, 68.02; H, 4.56; N, 7.91; S, 6.05%.
Sodium 2-(4-(3-Amino-4,6-diphenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-1-(p-tolylamino)ethen-1-olate (9b)
Orange powder (81% Yield), mp > 300 °C; IR (cm–1): 3425, 3260 (NH2), 1671 (CO); 1H NMR (DMSO): δ 2.27 (s, 3H, CH3), 6.76 (s, 2H, NH2), 7.06 (d, J = 8.7 Hz, 2H, ArH), 7.10–7.63 (m, 13H, ArH), 7.76 (d, J = 8.7 Hz, 2H, ArH), 7.82 (s, 1H, pyridine-5-H), 8.23–8.26 (m, 2H, ArH), 8.61 (s, 1H, NH); MS: m/z (%) 591 (M+). Anal. Calcd For C35H26N3NaO3S: C, 71.05; H, 4.43; N, 7.10; S, 5.42. Found: C, 71.05; H, 4.42; N, 7.11; S, 5.41%.
Sodium 2-(4-(3-Amino-4-methyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-1-((4-chlorophenyl)amino)ethen-1-olate (9c)
Yellow powder (83% Yield), mp > 300 °C; IR (cm–1): 3456,3260 (NH2), 1666 (CO); 1H NMR (DMSO): δ 2.89 (s, 3H, CH3), 7.13 (d, J = 8.4 Hz, 2H, ArH), 7.19–7.53 (m, 8H, ArH), 7.78 (d, J = 8.4 Hz, 2H, ArH), 7.83 (s, 1H, pyridine-5-H), 7.92 (s, 2H, NH2), 8.17 (d, J = 7.2 Hz, 2H, ArH), 8.82 (s, 1H, NH); 13C NMR: δ 20.4, 103.4, 113.5, 118.5, 119.6, 123.0, 127.0, 128.8, 129.7, 129.9, 130.4, 130.7, 137.4, 138.8, 146.7, 147.6, 151.6, 157.0, 161.5, 187,6; MS: m/z (%) 549 (M+). Anal. Calcd For C29H21ClN3NaO3S: C, 63.33; H, 3.85; N, 7.64; S, 5.83. Found: C, 63.33; H, 3.83; N, 7.63; S, 5.82%.
Sodium 2-(4-(3-Amino-4,6-diphenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-1-((4-chlorophenyl)amino)ethen-1-olate (9d)
Orange powder (84% Yield), mp > 300 °C; IR (cm–1): 3425,3255 (NH2), 1667 (CO); 1H NMR (DMSO): δ 6.79 (s, 2H, NH2), 7.14 (d, J = 8.7 Hz, 2H, ArH), 7.20–7.63 (m, 13H, ArH), 7.79 (d, J = 8.7 Hz, 2H, ArH), 7.82 (s, 1H, pyridine-5-H), 8.22–8.24 (m, 2H, ArH), 8.88 (s, 1H, NH); MS: m/z (%) 611 (M+). Anal. Calcd For C34H23ClN3NaO3S: C, 66.72; H, 3.79; N, 6.87; S, 5.24. Found: C, 66.71; H, 3.79; N, 6.88; S, 5.21. %.
General Procedure for the Synthesis of 2-(3-Amino-4-alkyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy-N-arylacetamide Derivatives 9′b–d
A solution of the appropriate 2-(4-(2-((3-cyano-4-alkyl-6-phenylpyridin-2-yl)thio)acetyl)phenoxy)-N-(aryl)acetamide 8a–d (10 mmol) in ethanol (25 mL) containing potassium carbonate (10 mmol) was heated at reflux for 2 h. The reaction mixture was then cooled, and the solvent was evaporated in a vacuum. The solid residue was collected and recrystallized from DMF to afford 9a–d.
2-(4-(3-Amino-4,6-diphenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-N-(p-tolyl)acetamide (9′b).
Orange powder (77% Yield), mp 226–228 °C; IR (cm–1): 3425, 3253 (NH2), 1671 (CO), 1645 (CO); 1H NMR (DMSO): δ 2.26 (s, 3H, CH3), 4.81 (s, 2H, OCH2), 6.86 (s, 2H, NH2), 7.12–8.25 (m, 19H, ArH, pyridine-5-H), 10.19 (s, 1H, NH); MS: m/z (%) 569 (M+). Anal. Calcd For C35H27N3O3S: C, 73.79; H, 4.78; N, 7.38; S, 5.63. Found: C, 73.77; H, 4.78; N, 7.35; S, 5.60%.
2-(4-(3-Amino-4-methyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-N-(4-chlorophenyl)acetamide (9′c)
Yellow powder (76% Yield), mp 240–242 °C; IR (cm–1): 3414,3233 (NH2), 1668 (CO), 1643 (CO); 1H NMR (DMSO): δ 2.89 (s, 3H, CH3), 3.32 (s, 1H, NH DMSO moisture), 4.85 (s, 2H, OCH2), 7.13–7.81 (m, 11H, ArH), 7.85 (s, 1H, pyridine-5-H), 7.92 (s, 2H, NH2), 8.16–8.17 (m, 2H, ArH); MS: m/z (%) 527 (M+). Anal. Calcd For C29H22ClN3O3S: C, 65.97; H, 4.20; N, 7.96; S, 6.07. Found: C, 65.97; H, 4.21; N, 7.93; S, 6.05%.
2-(4-(3-Amino-4,6-diphenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)-N-(4-chlorophenyl)acetamide (9′d)
Orange powder (77% Yield), mp 229–231 °C; IR (cm–1): 3430,3253 (NH2), 1667 (CO), 1443 (CO); 1H NMR (DMSO): δ 3.38 (s, 1H, NH DMSO moisture), 4.83 (s, 2H, OCH2), 6.84 (s, 2H, NH2), 7.13–7.82 (m, 16H, ArH), 7.84 (s, 1H, pyridine-5-H), 8.22–8.24 (m, 2H, ArH); 13C NMR: δ 67.0, 103.4, 114.5, 118.5, 119.9, 121.2, 127.3, 128.6, 128.7, 129.0, 129.1, 129.5, 129.6, 130.2, 133.7, 136.2, 137.2, 137.4, 148.9, 149.9, 157.2, 160.2, 162.0, 166.4; 188.0; m/z (%) 589 (M+). Anal. Calcd For C34H24ClN3O3S: C, 69.20; H, 4.10; N, 7.12; S, 5.43. Found: C, 69.21; H, 4.07; N, 7.11; S, 5.41. %.
General Procedure for the Synthesis of 2,2′-((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4-alkyl-6-phenylnicotinonitrile) 11a,b
To a solution of the appropriate 1,1′-(piperazine-1,4-diyl)bis(2-chloroethanone) 10 (5 mmol) in ethanol (25 mL) containing 0.2 mL of TEA, the appropriate 2-mercapto-4,6-disubstituted nicotinonitrile 2a or 2b (10 mmol) was added. The reaction mixture was heated at reflux for 3h. The solid obtained upon cooling was filtered off and recrystallized from ethanol/DMF to afford the title compounds 11a,b.
2,2′-((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4-methyl-6-phenylnicotinonitrile) (11a)
Colorless powder (79% Yield), mp 178–180 °C; IR (cm–1): 2214 (CN), 1643 (CO); 1H NMR (DMSO): δ 2.47 (s, 6H, CH3), 3.56–3.75 (m, 8H, NCH2), 4.43 (s, 4H, SCH2), 7.46–7.61 (m, 6H, ArH), 7.83 (s, 2H, pyridine-5-H), 8.11 (s, 4H, ArH); MS: m/z (%) 618 (M+). Anal. Calcd For C34H30N6O2S2: C, 66.00; H, 4.89; N, 13.58; S, 10.36. Found: C, 66.02; H, 4.83; N, 13.58; S, 10.37%.
2,2′-((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4,6-diphenylnicotinonitrile) (11b)
Off-white powder (74% Yield), mp 198–200 °C; IR (cm–1): 2211 (CN), 1645 (CO); 1H NMR (DMSO): δ 3.49–3.83 (m, 8H, NCH2), 4.53 (s, 4H, SCH2), 7.50–7.78 (m, 16H, ArH), 7.91 (s, 2H, pyridine-5-H), 8.22–8.24 (m, 4H, ArH); MS: m/z (%) 742 (M+). Anal. Calcd For C44H34N6O2S2: C, 71.14; H, 4.61; N, 11.31; S, 8.63. Found: C, 71.13; H, 4.63; N, 11.29; S, 8.60%.
General Procedure for the Synthesis of Piperazine-1,4-diylbis((3-amino-4-alkyl-6-phenylthieno[2,3-b]pyridin-2-yl)methanone) 12a,b
A solution of the appropriate 2,2′-(2,2′-(piperazine-1,4-diyl)bis(2-oxoethane-2,1-diyl))bis(sulfanediyl)bis(4-alkyl-6-phenylnicotinonitrile) 11a,b (5 mmol) in ethanol (25 mL) containing sodium ethoxide (10 mmol) was heated at reflux for 2 h. The reaction mixture was then cooled, and the solvent was evaporated in a vacuum. The solid residue was collected and recrystallized from DMF to afford 12a,b.
Piperazine-1,4-diylbis((3-amino-4-methyl-6-phenylthieno[2,3-b]pyridin-2-yl)methanone) (12a)
Yellow powder (72% Yield), mp 245–247 °C; IR (cm–1): 4415–3260 (NH2), 1633 (CO); 1H NMR (DMSO): δ 2.86 (s, 6H, CH3), 3.75 (s, 8H, NCH2), 6.03 (s, 4H, NH2), 7.49–7.51 (m, 6H, ArH), 7.78 (s, 2H, pyridine-5-H), 8.13–8.16 (m, 4H, ArH); 13C NMR: δ 25.5, 47.7, 116.7, 120.6, 122.7, 124.8, 127.6, 129.0, 130.4, 135.4, 144.4, 151.0, 156.4, 168.0; MS: m/z (%) 618 (M+). Anal. Calcd For C34H30N6O2S2: C, 66.00; H, 4.89; N, 13.58; S, 10.36. Found: C, 66.00; H, 4.83; N, 13.58; S, 10.37%.
Piperazine-1,4-diylbis((3-amino-4,6-diphenylthieno[2,3-b]pyridin-2-yl)methanone) (12b)
Orange powder (70% Yield), mp 288–290 °C; IR (cm–1): 2425–2271 (NH2), 1625 (CO); 1H NMR (DMSO): δ 3.70 (s, 8H, NCH2), 7.01 (s, 4H, NH2), 7.48–7.60 (m, 16H, ArH), 7.78 (s, 2H, pyridine-5-H), 8.20–8.23 (m, 4H, ArH); MS: m/z (%) 742 (M+). Anal. Calcd For C44H34N6O2S2: C, 71.14; H, 4.61; N, 11.31; S, 8.63. Found: C, 71.14; H, 4.64; N, 11.29; S, 8.61%.
General Procedure for the Synthesis of 1,1′-(Piperazine-1,4-diyl)bis(2-acetylphenoxy)ethanone Derivatives 13a,b
2-Hydroxyacetophenone 5a or 4-hydroxyacetophenone 5b (10 mmol) was dissolved in hot ethanolic KOH solution (prepared by dissolving 0.56 g (10 mmol) of KOH in 10 mL of absolute ethanol), and the solvent was then removed in vacuo. The remaining material was dissolved in DMF (10 mL) and 1,1′-(piperazine-1,4-diyl)bis(2-chloroethan-1-one) (10) (5 mmol) was added. The reaction mixture was refluxed for 10 min during which KCl was separated. The solvent was then removed in vacuo, and the remaining materials were poured onto crushed ice. The crude precipitate of 6 was recrystallized from ethanol 13a as off-white crystals and DMF 13b as a white powder.
1,1′-(Piperazine-1,4-diyl)bis(2-(2-acetylphenoxy)ethan-1-one) (13a)
Off-white crystals, (77% yield), mp 260 °C; IR (KBr) 1702 (C=O), 1682 (C=O) cm–1; 1H NMR: δ 2.63 (s, 6H, CH3), 3.50–3.56 (m, 8H, NCH2), 5.06 (s, 4H, OCH2), 7.00–7.58 (m, 8H, ArH); MS: m/z (%) 438 (M+). Anal. Calcd for C24H26N2O6; C, 65.74; H, 5.98; N, 6.39. Found: C, 65.71; H, 5.97; N, 6.38%
1,1′-(Piperazine-1,4-diyl)bis(2-(4-acetylphenoxy)ethan-1-one) (13b)
White crystals, (79% yield), mp 240 °C; IR (KBr) 1698 (C = O), 1677 (C=O) cm–1; 1H NMR: δ 2.51 (s, 6H, CH3), 3.47–3.54 (m, 8H, NCH2), 5.00 (s, 4H, OCH2), 7.02 (d, J = 8.7 Hz, 4H, ArH), 7.91 (d, J = 8.7 Hz, 4H, ArH); MS: m/z (%) 438 (M+). Anal. Calcd for C24H26N2O6; C, 65.74; H, 5.98; N, 6.39. Found: C, 65.71; H, 5.97; N, 6.38%
General Procedure for the Synthesis of 1,1′-(Piperazine-1,4-diyl)bis(2-(2-bromoacetyl)phenoxy)ethanone Derivatives 14a,b
To a stirred solution of the bis(acetophenone) derivatives 13a,b (l0 mmol) and p-TsOH (5.6 g, 20 mmol) in acetonitrile (50 mL) was slowly added NBS (3.6 g, 20 mmol). After NBS was added, the reaction mixture was heated at reflux with stirring for 2–3 h then left to cool to room temperature. The solvent was evaporated in vacuo, and the residue was dissolved in chloroform (50 mL), washed with water (20 mL), and dried over MgSO4. After evaporation of the solvent, the resulting solid was recrystallized from ethyl acetate to afford the bis(α-bromoketone) derivatives 14a,b.
1,1′-(Piperazine-1,4-diyl)bis(2-(2-(2-bromoacetyl)phenoxy)ethan-1-one) (14a)
Creamy crystals, (69% yield), mp 180 °C; IR (KBr) 1692 (C=O), 1660 (C=O) cm–1; 1H NMR: δ 3.50–3.56 (m, 8H, NCH2), 5.03 (s, 4H, CH2Br), 5.12 (s,4H, OCH2), 7.06–7.67 (m, 8H, ArH); MS: m/z (%) 596 (M+). Anal. Calcd for C24H24Br2N2O6; C, 48.34; H, 4.06; N, 4.70. Found: C, 48.34; H, 4.07; N, 4.67%.
1,1′-(Piperazine-1,4-diyl)bis(2-(4-(2-bromoacetyl)phenoxy)ethan-1-one) (14b)
White powder, (71% yield), mp 136 °C; IR (KBr) 1697 (C=O), 1659 (C=O) cm–1; 1H NMR: δ 3.48–3.55 (m, 8H, NCH2), 4.82 (s, 4H, CH2Br), 5.03 (s,4H, OCH2), 7.05 (d, J = 8.4 Hz, 4H, ArH), 7.96 (d, J = 8.4 Hz, 4H, ArH); MS: m/z (%) 596 (M+). Anal. Calcd for C24H24Br2N2O6; C, 48.34; H, 4.06; N, 4.70. Found: C, 48.33; H, 4.05; N, 4.67%.
General Procedure for the Synthesis of 2,2′-(((((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(n,1-phenylene))bis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4-alkyl-6-phenylnicotinonitrile) 15a–d
To a solution of the appropriate bis-bromoacetyls 14a,b (5 mmol) in ethanol (25 mL) containing 0.2 mL of TEA, the appropriate 2-mercapto-4,6-disubstituted nicotinonitrile 2a or 2b (10 mmol) was added. The reaction mixture was heated at reflux for 3–4 h. The solid product obtained upon cooling was filtered off and recrystallized from ethanol/DMF to afford compounds 15a–d.
2,2′-(((((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(2,1-phenylene))bis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4-methyl-6-phenylnicotinonitrile) (15a)
Yellowish white powder (76% Yield), mp 226–228 °C; IR (cm–1): 2217 (CN), 1690 (CO), 1643 (CO); 1H NMR (DMSO): δ 2.34 (s, 6H, CH3), 3.46–3.54 (m, 8H, NCH2), 4.98 (s, 4H, SCH2), 5.13 (s, 4H, OCH2), 6.99 (t, J = 7.2 Hz, 2H, ArH), 7.23–7.59 (m, 12H, ArH), 7.81 (s, 2H, pyridine-5-H), 7.95 (d, J = 7.8 Hz, 4H, ArH); MS: m/z (%) 886 (M+). Anal. Calcd For C50H42N6O6S2: C, 67.70; H, 4.77; N, 9.47; S, 7.23. Found: C, 67.69; H, 4.75; N, 9.47; S, 7.21%.
2,2′-(((((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(2,1-phenylene))bis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4,6-diphenylnicotinonitrile) (15b)
Yellow powder (77% Yield), mp 233–235 °C; IR (cm–1): 2223(CN), 1698 (CO), 1651 (CO); 1H NMR (DMSO): δ 3.48–3.56 (m, 8H, NCH2), 5.06 (s, 4H, SCH2), 5.15 (s, 4H, OCH2), 7.01 (t, J = 7.5 Hz, 2H, ArH), 7.25–7.75 (m, 22H, ArH), 7.87 (s, 2H, pyridine-5-H), 8.05 (d, J = 7.8 Hz, 4H, ArH); 13C NMR: δ 35.8, 42.0, 66.2, 102.5, 113.7, 115.7, 116.0, 121.0, 126.5, 127.5, 128.6, 128.8, 130.1, 130.6, 134.1, 135.6, 136.2, 154.1, 157.3, 157.8, 162.1, 165.6;, 194.7; MS: m/z (%) 1010 (M+). Anal. Calcd For C60H46N6O6S2: C, 71.27; H, 4.59; N, 8.31; S, 6.34. Found: C, 71.26; H, 4.59; N, 8.29; S, 6.36%.
2,2′-(((((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(4,1-phenylene))bis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4-methyl-6-phenylnicotinonitrile) (15c)
Yellow powder (78% Yield), mp 198–200 °C; IR (cm–1): 2214 (CN), 1695 (CO), 1650 (CO); 1H NMR (DMSO): δ 2.51 (s, 6H, CH3), 3.52–3.59 (m, 8H, NCH2), 4.92 (s, 4H, SCH2), 5.07 (s, 4H, OCH2), 7.09 (d, J = 8.4 Hz, 4H, ArH), 7.22–7.80(m, 10H, ArH), 7.82 (s, 2H, pyridine-5-H), 8.07 (d, J = 8.4 Hz, 4H, ArH); MS: m/z (%) 886 (M+). Anal. Calcd For C50H42N6O6S2: C, 67.70; H, 4.77; N, 9.47; S, 7.23. Found: C, 67.70; H, 4.76; N, 9.45; S, 7.22%.
2,2′-(((((Piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(4,1-phenylene))bis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4,6-diphenylnicotinonitrile) (15d)
Yellow powder (77% Yield), mp 239–241 °C; IR (cm–1): 2217(CN), 1691 (CO), 1644 (CO); 1H NMR (DMSO): δ 3.53–3.61 (m, 8H, NCH2), 4.99 (s, 4H, SCH2), 5.09 (s, 4H, OCH2), 7.12 (d, J = 8.1 Hz, 4H, ArH), 7.22–7.85 (m, 16H, ArH), 7.86 (s, 2H, pyridine-5-H), 7.91 (d, J = 7.8 Hz, 4H, ArH), 8.10 (d, J = 8.1 Hz, 4H, ArH); MS: m/z (%) 1010 (M+). Anal. Calcd For C60H46N6O6S2: C, 71.27; H, 4.59; N, 8.31; S, 6.34. Found: C, 71.26; H, 4.57; N, 8.30; S, 6.34%.
General Procedure for the Synthesis of 1,1′-(Piperazine-1,4-diyl)bis(2-(n-(3-amino-4-alkyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)ethanone) (16a, 16b, and 18)
A solution of the appropriate 2,2′-(((((piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(n,1-phenylene))bis(2-oxoethane-2,1-diyl))bis(sulfanediyl))bis(4-alkyl-6-phenylnicotinonitriles) 15a, 15b, and 15d (5 mmol) in ethanol (25 mL) containing sodium ethoxide (10 mmol) was heated at reflux for 2 h. The reaction mixture was then cooled, and the solvent was evaporated in a vacuum. The solid residue was collected and recrystallized from DMF to afford 16a, 16b, and 18.
1,1′-(Piperazine-1,4-diyl)bis(2-(4-(3-amino-4-methyl-6-phenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)ethan-1-one) (16a)
Yellow powder (68% Yield), mp > 300 °C; IR (cm–1): 3420, 3315 (NH2), 1695 (CO), 1650 (CO); 1H NMR (DMSO): δ 2.89 (s, 6H, CH3), 3.53–3.59 (m, 8H, NCH2), 5.02 (s, 4H, OCH2), 7.09 (d, J = 8.7 Hz, 4H, ArH), 7.50–7.82 (m, 10H, ArH), 7.85 (s, 2H, pyridine-5-H), 7.99 (s, 4H, NH2), 8.07 (d, J = 6.3 Hz, 4H, ArH); MS: m/z (%) 886 (M+). Anal. Calcd For C50H42N6O6S2: C, 67.70; H, 4.77; N, 9.47; S, 7.23. Found: C, 67.70; H, 4.76; N, 9.45; S, 7.22%.
1,1′-(Piperazine-1,4-diyl)bis(2-(4-(3-amino-4,6-diphenylthieno[2,3-b]pyridine-2-carbonyl)phenoxy)ethan-1-one) (16b)
Yellow powder (69% Yield), mp > 300 °C; IR (cm–1): 3425, 3326 (NH2), 1677 (CO), 1648 (CO); 1H NMR (DMSO): δ 3.53–3.60 (m, 8H, NCH2), 5.03 (s, 4H, OCH2), 6.85 (s, 4H, NH2), 7.22–7.85 (m, 30H, ArH, pyridine-5-H); MS: m/z (%) 1010 (M+). Anal. Calcd For C60H46N6O6S2: C, 71.27; H, 4.59; N, 8.31; S, 6.34. Found: C, 71.26; H, 4.57; N, 8.30; S, 6.34%.
2-((Benzofuran-3-ylmethyl)thio)-4,6-diphenylnicotinonitrile (18)
Yellow powder (77% Yield), mp 233–235 °C; IR (cm–1): 2223(CN), 1698 (CO), 1651 (CO); 1H NMR (DMSO): δ 7.45–7.56 (m, 10H, NH2, ArH), 7.72–7.81 (m, 5H, ArH, pyridine-5-H), 8.02 (d, J = 7.8 Hz, 1H, ArH), 8.24 (d, J = 7.2 Hz, 2H, ArH); MS: m/z (%) 418 (M+). Anal. Calcd For C27H18N2OS: C, 77.49; H, 4.34; N, 6.69; S, 7.66. Found: C, 77.47; H, 4.33; N, 6.68; S, 7.64%.
Supporting Information Available
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.3c06653.
1H NMR spectrum of compound 3a; 13C NMR spectrum of compound 3a; 1H NMR spectrum of compound 3b; 1H NMR spectrum of compound 3c; 13C NMR spectrum of compound 3c; 1H NMR spectrum of compound 3d; 1H NMR spectrum of compound 4a; 13C NMR spectrum of compound 4a; 1H NMR spectrum of compound 4b; 1H NMR spectrum of compound 4c; 13C NMR spectrum of compound 4c; 1H NMR spectrum of compound 4d; 1H NMR spectrum of compound 8a; 1H NMR spectrum of compound 8b; 1H NMR spectrum of compound 8c; 1H NMR spectrum of compound 8d; 1H NMR spectrum of compound 9a; 13C NMR spectrum of compound 9a; 1H NMR spectrum of compound 9b; 1H NMR spectrum of compound 9c; 13C NMR spectrum of compound 9c; 1H NMR spectrum of compound 9d; 1H NMR spectrum of compound 9′b; 1H NMR spectrum of compound 9′c; 1H NMR spectrum of compound 9′d; 13C NMR spectrum of compound 9′d; 1H NMR spectrum of compound 11a; 1H NMR spectrum of compound 11b; 1H NMR spectrum of compound 12a; 13C NMR spectrum of compound 12a; 1H NMR spectrum of compound 12b; 1H NMR spectrum of compound 13a; 1H NMR spectrum of compound 13b; 1H NMR spectrum of compound 14a; 1H NMR spectrum of compound 14b; 1H NMR spectrum of compound 15a; 1H NMR spectrum of compound 15b; 13C NMR spectrum of compound 15b; 1H NMR spectrum of compound 15c; 1H NMR spectrum of compound 15d; 1H NMR spectrum of compound ′6a; 1H NMR spectrum of compound 16b; and 1H NMR spectrum of compound 18 (PDF)
The authors declare no competing financial interest.
Supplementary Material
References
- Pervan M.; Marijan S.; Markotić A.; Pilkington L. I.; Haverkate N. A.; Barker D.; Reynisson J.; Meić L.; Radan M.; Čikeš Čulić V. Novel Thieno [2,3-b]Pyridine Anticancer Compound Lowers Cancer Stem Cell Fraction Inducing Shift of Lipid to Glucose Metabolism. Int. J. Mol. Sci. 2022, 23 (19), 11457. 10.3390/ijms231911457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amorim R.; de Meneses M. D. F.; Borges J. C.; da Silva Pinheiro L. C.; Caldas L. A.; Cirne-Santos C. C.; de Mello M. V. P.; de Souza A. M. T.; Castro H. C.; de Palmer Paixão I. C. N.; de Mendonça Campos R.; Bergmann I. E.; Malirat V.; Bernardino A. M. R.; Rebello M. A.; Ferreira D. F. Thieno[2,3-b]Pyridine Derivatives: A New Class of Antiviral Drugs against Mayaro Virus. Arch. Virol. 2017, 162 (6), 1577–1587. 10.1007/s00705-017-3261-0. [DOI] [PubMed] [Google Scholar]
- Chaubey A.; Pandeya S. N. Pyridine a Versatile Nucleuse in Pharmaceutical Field. Asian J. Pharm. Clin. Res. 2011, 4 (4), 5–8. [Google Scholar]
- Liu H.; Li Y.; Wang X. Y.; Wang B.; He H. Y.; Liu J. Y.; Xiang M. L.; He J.; Wu X. H.; Yang L. Synthesis, Preliminary Structure-Activity Relationships, and in Vitro Biological Evaluation of 6-Aryl-3-Amino-Thieno[2,3-b]Pyridine Derivatives as Potential Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2013, 23 (8), 2349–2352. 10.1016/j.bmcl.2013.02.059. [DOI] [PubMed] [Google Scholar]
- Mohi El-Deen E. M.; Abd El-Meguid E. A.; Hasabelnaby S.; Karam E. A.; Nossier E. S. Synthesis, Docking Studies, and in Vitro Evaluation of Some Novel Thienopyridines and Fused Thienopyridine-Quinolines as Antibacterial Agents and DNA Gyrase Inhibitors. Molecules 2019, 24 (20), 3650. 10.3390/molecules24203650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Trawneh S. A.; El-Abadelah M. M.; Zahra J. A.; Al-Taweel S. A.; Zani F.; Incerti M.; Cavazzoni A.; Vicini P. Synthesis and Biological Evaluation of Tetracyclic Thienopyridones as Antibacterial and Antitumor Agents. Bioorg. Med. Chem. 2011, 19 (8), 2541–2548. 10.1016/j.bmc.2011.03.018. [DOI] [PubMed] [Google Scholar]
- Kamata M.; Yamashita T.; Kina A.; Funata M.; Mizukami A.; Sasaki M.; Tani A.; Funami M.; Amano N.; Fukatsu K. Design, Synthesis, and Structure-Activity Relationships of Novel Spiro-Piperidines as Acetyl-CoA Carboxylase Inhibitors. Bioorg. Med. Chem. Lett. 2012, 22 (11), 3643–3647. 10.1016/j.bmcl.2012.04.047. [DOI] [PubMed] [Google Scholar]
- Saito K.; Nakao A.; Shinozuka T.; Shimada K.; Matsui S.; Oizumi K.; Yano K.; Ohata K.; Nakai D.; Nagai Y.; Naito S. Discovery and Structure-Activity Relationship of Thienopyridine Derivatives as Bone Anabolic Agents. Bioorg. Med. Chem. 2013, 21 (7), 1628–1642. 10.1016/j.bmc.2013.01.071. [DOI] [PubMed] [Google Scholar]
- Elnaggar D. H.; Mohamed A. M.; Abdel Hafez N. A.; Azab M. E.; Elasasy M. E. A.; Awad H. M.; Farghaly T. A.; Amr A. E. G. E. Antiproliferative Activity of Some Newly Synthesized Substituted Nicotinamides Candidates Using Pyridine-2(1 H) Thione Derivatives as Synthon. ACS Omega 2022, 7 (12), 10304–10316. 10.1021/acsomega.1c06951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nkomba G.; Terre’Blanche G.; Janse van Rensburg H. D.; Legoabe L. J. Design, Synthesis and Evaluation of Amino-3,5-Dicyanopyridines and Thieno[2,3-b]Pyridines as Ligands of Adenosine A1 Receptors for the Potential Treatment of Epilepsy. Med. Chem. Res. 2022, 31 (8), 1277–1297. 10.1007/s00044-022-02908-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binsaleh N. K.; Wigley C. A.; Whitehead K. A.; van Rensburg M.; Reynisson J.; Pilkington L. I.; Barker D.; Jones S.; Dempsey-Hibbert N. C. Thieno[2,3-b]Pyridine Derivatives Are Potent Anti-Platelet Drugs, Inhibiting Platelet Activation, Aggregation and Showing Synergy with Aspirin. Eur. J. Med. Chem. 2018, 143, 1997–2004. 10.1016/j.ejmech.2017.11.014. [DOI] [PubMed] [Google Scholar]
- Gao L. J.; Kovackova S.; Šála M.; Ramadori A. T.; De Jonghe S.; Herdewijn P. Discovery of Dual Death-Associated Protein Related Apoptosis Inducing Protein Kinase 1 and 2 Inhibitors by a Scaffold Hopping Approach. J. Med. Chem. 2014, 57 (18), 7624–7643. 10.1021/jm5007929. [DOI] [PubMed] [Google Scholar]
- Krauze A.; Grinberga S.; Krasnova L.; Adlere I.; Sokolova E.; Domracheva I.; Shestakova I.; Andzans Z.; Duburs G. Thieno[2,3-b]Pyridines - A New Class of Multidrug Resistance (MDR) Modulators. Bioorg. Med. Chem. 2014, 22 (21), 5860–5870. 10.1016/j.bmc.2014.09.023. [DOI] [PubMed] [Google Scholar]
- Farid N. A.; Kurihara A.; Wrighton S. A. Review: Metabolism and Disposition of the Thienopyridine Antiplatelet Drugs Ticlopidine, Clopidogrel, and Prasugrel in Humans. J. Clin. Pharmacol. 2010, 126–142. 10.1177/0091270009343005. [DOI] [PubMed] [Google Scholar]
- Mahesh S.; Tang K. C.; Raj M. Amide Bond Activation of Biological Molecules. Molecules 2018, 23 (10), 2615. 10.3390/molecules23102615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sroor F. M.; Mahrous K. F.; El-Kader H. A. M. A.; Othman A. M.; Ibrahim N. S. Impact of Trifluoromethyl and Sulfonyl Groups on the Biological Activity of Novel Aryl - Urea Derivatives: Synthesis, in - Vitro, in - Silico and SAR Studies. Sci. Rep. 2023, 13, 17560 10.1038/s41598-023-44753-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seavill P. W.; Wilden J. D. The Preparation and Applications of Amides Using Electrosynthesis. Green Chem. 2020, 7737–7759. 10.1039/d0gc02976a. [DOI] [Google Scholar]
- Wang X. Challenges and Outlook for Catalytic Direct Amidation Reactions. Nat. Catal. 2019, 98–102. 10.1038/s41929-018-0215-1. [DOI] [Google Scholar]
- Yusov A. S.; Chashchina S. V.; Mikhailovskii A. G.; Rudakova I. P. Synthesis and Analgesic and Anti-Inflammatory Activities of (3,3-Dipropyl-6,7-Dimethoxy-3,4-Dihydroisoquinolin-1(2H)-Ylidene)-Acetamide Hydrochlorides. Pharm. Chem. J. 2019, 53 (1), 35–39. 10.1007/s11094-019-01951-y. [DOI] [Google Scholar]
- Khazir J.; Mir B. A.; Chashoo G.; Maqbool T.; Riley D.; Pilcher L. Design, Synthesis, and Anticancer Evaluation of Acetamide and Hydrazine Analogues of Pyrimidine. J. Heterocycl. Chem. 2020, 57 (3), 1306–1318. 10.1002/jhet.3867. [DOI] [Google Scholar]
- Mikhailovskii A. G.; Pogorelova E. S.; Pershina N. N.; Makhmudov R. R.; Novikova V. V. Synthesis and Analgesic, Antihypoxic, and Antimicrobial Activity of (Z)-2-(2-Arylhydrazono)-2-(3,3-Dimethyl-3,4-Dihydroisoquinolin-1-Yl)Acetamides. Pharm. Chem. J. 2020, 53 (11), 1013–1017. 10.1007/s11094-020-02115-z. [DOI] [Google Scholar]
- Gull Y.; Rasool N.; Noreen M.; Altaf A. A.; Musharraf S. G.; Zubair M.; Nasim F. U. H.; Yaqoob A.; DeFeo V.; Zia-Ul-Haq M. Synthesis of N-(6-Arylbenzo[d]Thiazole-2-Acetamide Derivatives and Their Biological Activities: An Experimental and Computational Approach. Molecules 2016, 21 (3), 266. 10.3390/molecules21030266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yele V.; Azam M. A.; Wadhwani A. D. Synthesis, Molecular Docking and Biological Evaluation of 2-Aryloxy-N-Phenylacetamide and N′-(2-Aryloxyoxyacetyl) Benzohydrazide Derivatives as Potential Antibacterial Agents. Chem. Biodivers. 2021, 18 (4), e2000907 10.1002/cbdv.202000907. [DOI] [PubMed] [Google Scholar]
- Severina H. I.; Skupa O. O.; Voloshchuk N. I.; Georgiyants V. A. Synthesis, Docking Study, and Pharmacological Evaluation of S-Acetamide Derivatives of 4,6-Dimethyl-2-Thiopyrimidine as Anticonvulsant Agents. J. Appl. Pharm. Sci. 2020, 10 (7), 1–8. 10.7324/JAPS.2020.10701. [DOI] [Google Scholar]
- Borsoi A. F.; Paz J. D.; Abbadi B. L.; Macchi F. S.; Sperotto N.; Pissinate K.; Rambo R. S.; Ramos A. S.; Machado D.; Viveiros M.; Bizarro C. V.; Basso L. A.; Machado P. Design, Synthesis, and Evaluation of New 2-(Quinoline-4-Yloxy)Acetamide-Based Antituberculosis Agents. Eur. J. Med. Chem. 2020, 192, 112179 10.1016/j.ejmech.2020.112179. [DOI] [PubMed] [Google Scholar]
- Mary S. J. J.; Siddique M. U. M.; Pradhan S.; Jayaprakash V.; James C. Quantum Chemical Insight into Molecular Structure, NBO Analysis of the Hydrogen-Bonded Interactions, Spectroscopic (FT–IR, FT–Raman), Drug Likeness and Molecular Docking of the Novel Anti COVID-19 Molecule 2-[(4,6-Diaminopyrimidin-2-Yl)Sulfanyl]-N-(4-Fluo. Spectrochim. Acta, Part A 2021, 244, 118825 10.1016/j.saa.2020.118825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rani P.; Pal D.; Hegde R. R.; Hashim S. R. Anticancer, Anti-Inflammatory, and Analgesic Activities of Synthesized 2-(Substituted Phenoxy) Acetamide Derivatives. Biomed. Res. Int. 2014, 2014, 1–9. 10.1155/2014/386473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akimoto M.; Maruyama R.; Kawabata Y.; Tajima Y.; Takenaga K. Antidiabetic Adiponectin Receptor Agonist AdipoRon Suppresses Tumour Growth of Pancreatic Cancer by Inducing RIPK1/ERK-Dependent Necroptosis. Cell Death Dis. 2018, 9 (8), 804 10.1038/s41419-018-0851-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Ostoot F. H.; Zabiulla; Salah S.; Khanum S. A. Recent Investigations into Synthesis and Pharmacological Activities of Phenoxy Acetamide and Its Derivatives (Chalcone, Indole and Quinoline) as Possible Therapeutic Candidates. J. Iran. Chem. Soc. 2021, 18 (8), 1839–1875. 10.1007/s13738-021-02172-5. [DOI] [Google Scholar]
- Zhang R.-H.; Guo H.-Y.; Deng H.; Li J.; Quan Z.-S. Piperazine Skeleton in the Structural Modification of Natural Products: A Review. J. Enzyme Inhib. Med. Chem. 2021, 36 (1), 1165–1197. 10.1080/14756366.2021.1931861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Ghorbani M.; Bushra Begum A.; Zabiulla Z.; Mamatha S. V.; Khanum S. A. Piperazine and Morpholine: Synthetic Preview and Pharmaceutical Applications. Res. J. Pharm. Technol. 2015, 8 (5), 611–628. 10.5958/0974-360X.2015.00100.6. [DOI] [Google Scholar]
- Shaquiquzzaman M.; Verma G.; Marella A.; Akhter M.; Akhtar W.; Khan M. F.; Tasneem S.; Alam M. M. Piperazine Scaffold: A Remarkable Tool in Generation of Diverse Pharmacological Agents. Eur. J. Med. Chem. 2015, 102, 487–529. 10.1016/j.ejmech.2015.07.026. [DOI] [PubMed] [Google Scholar]
- Tamayo N. A.; Norman M. H.; Bartberger M. D.; Hong F. T.; Bo Y.; Liu L.; Nishimura N.; Yang K. C.; Tadesse S.; Fotsch C.; Chen J.; Chmait S.; Cupples R.; Hale C.; Jordan S. R.; Lloyd D. J.; Sivits G.; Van G.; St Jean D. J. Small Molecule Disruptors of the Glucokinase-Glucokinase Regulatory Protein Interaction: 5. A Novel Aryl Sulfone Series, Optimization Through Conformational Analysis. J. Med. Chem. 2015, 58 (11), 4462–4482. 10.1021/jm5018175. [DOI] [PubMed] [Google Scholar]
- Migliore M.; Pontis S.; Fuentes de Arriba A. L.; Realini N.; Torrente E.; Armirotti A.; Romeo E.; Di Martino S.; Russo D.; Pizzirani D.; Summa M.; Lanfranco M.; Ottonello G.; Busquet P.; Jung K.; Garcia-Guzman M.; Heim R.; Scarpelli R.; Piomelli D. Second-Generation Non-Covalent NAAA Inhibitors Are Protective in a Model of Multiple Sclerosis. Angew. Chem. 2016, 128 (37), 11359–11363. 10.1002/ange.201603746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao X.; Zhang Y.; Chen Y.; Qiu Y.; Yu M.; Xu X.; Liu X.; Liu B. F.; Zhang L.; Zhang G. Synthesis and Biological Evaluation of Fused Tricyclic Heterocycle Piperazine (Piperidine) Derivatives As Potential Multireceptor Atypical Antipsychotics. J. Med. Chem. 2018, 61 (22), 10017–10039. 10.1021/acs.jmedchem.8b01096. [DOI] [PubMed] [Google Scholar]
- He Y.; Xie F.; Ye J.; Deuther-Conrad W.; Cui B.; Wang L.; Lu J.; Steinbach J.; Brust P.; Huang Y.; Lu J.; Jia H. 1-(4-[18F]Fluorobenzyl)-4-[(Tetrahydrofuran-2-Yl)Methyl]Piperazine: A Novel Suitable Radioligand with Low Lipophilicity for Imaging ∑1 Receptors in the Brain. J. Med. Chem. 2017, 60 (10), 4161–4172. 10.1021/acs.jmedchem.6b01723. [DOI] [PubMed] [Google Scholar]
- Sergeant N.; Vingtdeux V.; Eddarkaoui S.; Gay M.; Evrard C.; Le Fur N.; Laurent C.; Caillierez R.; Obriot H.; Larchanché P. E.; Farce A.; Coevoet M.; Carato P.; Kouach M.; Descat A.; Dallemagne P.; Buée-Scherrer V.; Blum D.; Hamdane M.; Buée L.; Melnyk P. New Piperazine Multi-Effect Drugs Prevent Neurofibrillary Degeneration and Amyloid Deposition, and Preserve Memory in Animal Models of Alzheimer’s Disease. Neurobiol. Dis. 2019, 129, 217–233. 10.1016/j.nbd.2019.03.028. [DOI] [PubMed] [Google Scholar]
- Ji Q.; Deng Q.; Li B.; Li B.; Shen Y. Design, Synthesis and Biological Evaluation of Novel 5-(Piperazin-1-Yl)Quinolin-2(1H)-One Derivatives as Potential Chitin Synthase Inhibitors and Antifungal Agents. Eur. J. Med. Chem. 2019, 180, 204–212. 10.1016/j.ejmech.2019.07.035. [DOI] [PubMed] [Google Scholar]
- Salem M. E.; Fares I. M. Z.; Ghozlan S. A. S.; Abdel-Aziz M. M.; Abdelhamid I. A.; Elwahy A. H. M. Facile Synthesis and Antimicrobial Activity of Bis(Fused 4H-Pyrans) Incorporating Piperazine as Novel Hybrid Molecules: Michael’s Addition Approach. J. Heterocycl. Chem. 2022, 59 (11), 1907–1926. 10.1002/jhet.4525. [DOI] [Google Scholar]
- Posso M. C.; Domingues F. C.; Ferreira S.; Silvestre S. Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. Molecules 2022, 27 (1), 276. 10.3390/molecules27010276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gontijo V. S.; Viegas F. P. D.; Ortiz C. J. C.; de Freitas Silva M.; Damasio C. M.; Rosa M. C.; Campos T. G.; Couto D. S.; Tranches Dias K. S.; Viegas C. Molecular Hybridization as a Tool in the Design of Multi-Target Directed Drug Candidates for Neurodegenerative Diseases. Curr. Neuropharmacol. 2020, 18 (5), 348–407. 10.2174/1385272823666191021124443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibrahim N. S.; Mohamed M. F.; Elwahy A. H. M.; Abdelhamid I. A. Biological Activities and Docking Studies on Novel Bis 1,4-DHPS Linked to Arene Core via Ether or Ester Linkage. Lett. Drug Des. Discovery 2018, 15 (10), 1036–1045. 10.2174/1570180815666180105162323. [DOI] [Google Scholar]
- Ghozlan S. A. S.; Abdelmoniem A. M.; Butenschön H.; Abdelhamid I. A. Discrepancies in the Reactivity Pattern of Azaenamines towards Cinnamonitriles: Synthesis of Novel Aza-Steroid Analogues. Tetrahedron 2015, 71 (9), 1413–1418. 10.1016/j.tet.2015.01.026. [DOI] [Google Scholar]
- Al-Awadi N. A.; Ibrahim M. R.; Abdelhamid I. A.; Elnagdi M. H. Arylhydrazonals as the Aldehyde Component in Baylis-Hillman Reactions. Tetrahedron 2008, 64 (35), 8202–8205. 10.1016/j.tet.2008.06.026. [DOI] [Google Scholar]
- H M Elwahy A.; Kassab R. M.; Abdelhamid I. A.; Elwahy A. H. M. Microwave Assisted Multi-Component Synthesis of Novel Bis(1,4-Dihydropyridines) Based Arenes or Heteroarenes. Heterocycles 2016, 92 (5), 910–924. 10.3987/COM-16-13441. [DOI] [Google Scholar]
- Sroor F. M.; Aboelenin M. M.; Mahrous K. F.; Mahmoud K.; Elwahy A. H. M.; Abdelhamid I. A. Novel 2-Cyanoacrylamido-4,5,6,7-Tetrahydrobenzo[b]Thiophene Derivatives as Potent Anticancer Agents. Arch. Pharm. 2020, 353 (10), e2000069 10.1002/ardp.202000069. [DOI] [PubMed] [Google Scholar]
- Ghozlan S. A. S.; Mohamed M. H.; Abdelmoniem A. M.; Abdelhamid I. A. Synthesis of Pyridazines and Fused Pyridazines via [3 + 3] Atom Combination Using Chitosan as a Green Catalyst. Arkivoc 2009, (No. 10), 302–311. 10.3998/ark.5550190.0010.a27. [DOI] [Google Scholar]
- M Abdella A.; Elwahy A. H. M.; Abdelhamid I. A. Multicomponent Synthesis of Novel Bis(2-Amino-Tetrahydro-4H-Chromene-3-Carbonitrile) Derivatives Linked to Arene or Heteroarene Cores. Curr. Org. Synth. 2016, 13 (4), 601–610. 10.2174/1570179413999151211115100. [DOI] [Google Scholar]
- Mohamed Teleb M. A.; Hassaneen H. M.; Abdelhamid I. A.; Saleh F. M. Hantzsch-like Synthesis of Isoquinolino[2,1-a]Quinoline-12-Carbonitrile Incorporating Aryl or Heteroaryl Moieties at C-13. J. Heterocycl. Chem. 2023, 336–340. 10.1002/JHET.4765. [DOI] [Google Scholar]
- Mekky A. E. M.; Elwahy A. H. M. Synthesis of Novel Benzo-Substituted Macrocyclic Ligands Containing Thienothiophene Subunits. J. Heterocycl. Chem. 2014, 51 (S1), E34–E41. 10.1002/jhet.2012. [DOI] [Google Scholar]
- Ibrahim Y. A.; Abbas A. A.; Elwahy A. H. M. New Trends in the Chemistry of Condensed Heteromacrocycles Part B: Macrocyclic Formazans. J. Heterocycl. Chem. 2004, 41 (2), 135–149. 10.1002/jhet.5570410202. [DOI] [Google Scholar]
- A Ibrahim Y.; HM Elwahy A.; A Abbas A. New Synthesis of Macrocyclic Crown-Formazans from Pyruvic Acid Derivatives. Tetrahedron 1994, 50 (39), 11489–11498. 10.1016/S0040-4020(01)89286-3. [DOI] [Google Scholar]
- Muathen H. A.; Aloweiny N. A. M.; Elwahy A. H. M. Synthesis of Novel Amide-Crownophanes and Schiff Base-Crownophanes Based on p -Phenylene, 2,6-Naphthalene, and 9,10-Anthracene. J. Heterocycl. Chem. 2009, 46 (4), 656–663. 10.1002/jhet.129. [DOI] [Google Scholar]
- Fathi E. M.; Sroor F. M.; Mahrous K. F.; Mohamed M. F.; Mahmoud K.; Emara M.; Elwahy A. H. M.; Abdelhamid I. A. Design, Synthesis, In Silico and In Vitro Anticancer Activity of Novel Bis-Furanyl-Chalcone Derivatives Linked through Alkyl Spacers. ChemistrySelect 2021, 6 (24), 6202–6211. 10.1002/slct.202100884. [DOI] [Google Scholar]
- Abdallah M.; Defrawy A. M.; El; Zaafarany I. A.; Sobhi M.; Elwahy A. H. M.; Shaaban M. R. Inhibition Effects and Theoretical Studies of Synthesized Novel Bisaminothiazole Derivatives as Corrosion Inhibitors for Carbon Steel in Sulphuric Acid Solutions. Int. J. Electrochem. Sci. 2014, 9, 2186–2207. 10.1016/S1452-3981(23)07920-8. [DOI] [Google Scholar]
- Salem M. E.; Darweesh A. F.; Mekky A. E. M.; Farag A. M.; Elwahy A. H. M. 2-Bromo-1-(1H-pyrazol-4-yl) Ethanone: Versatile Precursor for Novel Mono-and Bis [Pyrazolylthiazoles]. J. Heterocycl. Chem. 2017, 54 (1), 226–234. 10.1002/jhet.2571. [DOI] [Google Scholar]
- Elwahy A. H. M.; Abbas A. A. Bis(β-Difunctional) Compounds: Versatile Starting Materials for Novel Bis(Heterocycles). Synth. Commun. 2000, 30 (16), 2903–2921. 10.1080/00397910008087441. [DOI] [Google Scholar]
- Elwahy A.; Shaaban M. Synthesis of Trifluoromethyl-Substituted Fused Bicyclic Heterocycles and Their Corresponding Benzo-Fused Analogues. Curr. Org. Synth. 2010, 7 (5), 433–454. 10.2174/157017910792246117. [DOI] [Google Scholar]
- Ibrahim Y. A.; Elwahy A. H. M.; Kadry A. M. Thienopyrimidines: Synthesis, Reactions, and Biological Activity. Adv. Heterocycl. Chem. 1996, 65 (65), 235–281. 10.1016/S0065-2725(08)60297-4. [DOI] [Google Scholar]
- Elwahy A. H. M. New Trends in the Chemistry of Condensed Heteromacrocycles Part A: Condensed Azacrown Ethers and Azathiacrown Ethers. J. Heterocycl. Chem. 2003, 40 (1), 1–23. 10.1002/jhet.5570400101. [DOI] [Google Scholar]
- Shaaban M.; Elwahy A. H. Synthesis of Oxazolo-, Thiazolo-, Pyrazolo-, and Imidazo-Fused Heterocycles by Multi-Component Reactions (Part 2). Curr. Org. Synth. 2014, 11 (4), 471–525. 10.2174/15701794113106660076. [DOI] [Google Scholar]
- Abd El-Fatah N. A.; Darweesh A. F.; Mohamed A. A.; Abdelhamid I. A.; Elwahy A. H. M. Experimental and Theoretical Study on the Regioselective Bis- and Polyalkylation of 2-Mercaptonicotinonitrile and 2-Mercaptopyrimidine-5-Carbonitrile Derivatives. Tetrahedron 2017, 73 (11), 1436–1450. 10.1016/j.tet.2017.01.047. [DOI] [Google Scholar]
- Sayed O. M.; Mekky A. E. M.; Farag A. M.; Elwahy A. H. M. 3,4-Bis(Bromomethyl)Thieno[2,3-b]Thiophene: Versatile Precursors for Novel Bis(Triazolothiadiazines), Bis(Quinoxalines), Bis(Dihydrooxadiazoles), and Bis(Dihydrothiadiazoles). J. Heterocycl. Chem. 2016, 53, 1113–1120. 10.1002/jhet.2373. [DOI] [Google Scholar]
- Elwahy A. H. M.; Darweesh A. F.; Shaaban M. R. Microwave-Assisted Synthesis of Bis(Enaminoketones): Versatile Precursors for Novel Bis(Pyrazoles) via Regioselective 1,3-Dipolar Cycloaddition with Nitrileimines. J. Heterocycl. Chem. 2012, 49 (5), 1120–1125. 10.1002/jhet.952. [DOI] [Google Scholar]
- Al-Awadi N. A.; Abdelhamid I. A.; Abdelhamid I.; Al-Etaibi A. M.; Elnagdi M. H. Gas-Phase Pyrolysis in Organic Synthesis: Rapid Green Synthesis of 4-Quinolinones. Synlett 2007, 2007 (No. 14), 2205–2208. 10.1055/s-2007-985573. [DOI] [Google Scholar]
- Darweesh A. F.; Mekky A. E. M.; Salman A. A.; Farag A. M. Efficient, Microwave-Mediated Synthesis of Benzothiazole- and Benzimidazole-Based Heterocycles. Res. Chem. Intermed. 2016, 42 (5), 4341–4358. 10.1007/s11164-015-2279-8. [DOI] [Google Scholar]
- Darweesh A. F.; Abd El-Fatah N. A.; Abdel-Latif S. A.; Abdelhamid I. A.; Elwahy A. H. M.; Salem M. E. Synthesis and DFT Studies of Novel Aminoimidazodipyridines Using 2-(3H-Imidazo[4,5-b]Pyrid-2-Yl)Acetonitrile as an Efficient Key Precursor. Arkivoc 2021, 2021 (8), 23–37. 10.24820/ARK.5550190.P011.415. [DOI] [Google Scholar]
- Darweesh A. F.; Abd El-Fatah N. A.; Abdelhamid I. A.; Elwahy A. H. M.; Salem M. E. Investigation of the Reactivity of (1H-Benzo[d]Imidazol-2-Yl)Acetonitrile and (Benzo[d]Thiazol-2-Yl)Acetonitrile as Precursors for Novel Bis(Benzo[4,5]Imidazo[1,2-a]Pyridines) and Bis(Benzo[4,5]Thiazolo[3,2-a]Pyridines). Synth. Commun. 2020, 50 (16), 2531–2544. 10.1080/00397911.2020.1784436. [DOI] [Google Scholar]
- Radwan I. T.; Elwahy A. H. M.; Darweesh A. F.; Sharaky M.; Bagato N.; Khater H. F.; Salem M. E. Design, Synthesis, Docking Study, and Anticancer Evaluation of Novel Bis-Thiazole Derivatives Linked to Benzofuran or Benzothiazole Moieties as PI3k Inhibitors and Apoptosis Inducers. J. Mol. Struct. 2022, 1265, 133454 10.1016/j.molstruc.2022.133454. [DOI] [Google Scholar]
- Diab H. M.; Salem M. E.; Abdelhamid I. A.; Elwahy A. H. M. Synthesis of Novel Star-Shaped Molecules Based on a 1,3,5-Triazine Core Linked to Different Heterocyclic Systems as Novel Hybrid Molecules. RSC Adv. 2020, 10 (72), 44066–44078. 10.1039/D0RA09025E. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosny M.; Salem M. E.; Darweesh A. F.; Elwahy A. H. M. Synthesis of Novel Bis(Thiazolylchromen-2-One) Derivatives Linked to Alkyl Spacer via Phenoxy Group. J. Heterocycl. Chem. 2018, 55 (10), 2342–2348. 10.1002/jhet.3296. [DOI] [Google Scholar]
- Salem M. E.; Ahmed A. A.; Darweesh A. F.; Kühn O.; Elwahy A. H. M. Synthesis and DFT Calculations of 2-Thioxo-1,2-Dihydropyridine-3-Carbonitrile as Versatile Precursors for Novel Pharmacophoric Hybrid Molecules. J. Mol. Struct. 2019, 1176, 19–30. 10.1016/j.molstruc.2018.08.031. [DOI] [Google Scholar]
- Mohamed M. F.; Ibrahim N. S.; Saddiq A. A.; Abdelhamid I. A. Novel 3-(Pyrazol-4-Yl)-2-(1H-Indole-3-Carbonyl)Acrylonitrile Derivatives Induce Intrinsic and Extrinsic Apoptotic Death Mediated P53 in HCT116 Colon Carcinoma. Sci. Rep. 2023, 13 (1), 22486 10.1038/s41598-023-48494-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salem M. E.; Ahmed A. A.; Shaaban M. R.; Shibl M. F.; Farag A. M. Regioselective Synthesis and Ab Initio Calculations of Fused Heterocycles Thermally and under Microwave Irradiation. Spectrochim. Acta, Part A 2015, 148, 175–183. 10.1016/j.saa.2015.03.102. [DOI] [PubMed] [Google Scholar]
- Sroor F. M.; Abdelmoniem A. M.; Abdelhamid I. A. Facile Synthesis, Structural Activity Relationship, Molecular Modeling and In Vitro Biological Evaluation of New Urea Derivatives with Incorporated Isoxazole and Thiazole Moieties as Anticancer Agents. ChemistrySelect 2019, 4 (34), 10113–10121. 10.1002/slct.201901415. [DOI] [Google Scholar]
- Abdelhamid I. A.; Darwish E. S.; Nasra M. A.; Abdel-Gallil F. M.; Fleita D. H. Synthesis and Chemical Reactivity of New Azaenamines Incorporated the 4,5,6,7-Tetrahydrobenzo[b]Thiophene Moiety: 3 + 3 Atom Combination. Synthesis 2010, 2010 (No. 07), 1107–1112. 10.1055/s-0029-1219235. [DOI] [Google Scholar]
- Ghozlan S. A. S.; Abdelhamid I. A. A.; Elnagdi M. H. H. Functionally Substituted Arylhydrazones as Building Blocks in Heterocyclic Synthesis: Routes to Pyridazines and Pyridazinoquinazolines. Arkivoc 2006, 2006 (No. xiii), 147–157. 10.3998/ark.5550190.0007.d15. [DOI] [Google Scholar]
- Abdelmoniem A. M.; Hassaneen H. M. E.; Abdelhamid I. A. An Efficient One-Pot Synthesis of Novel Spiro Cyclic 2-Oxindole Derivatives of Pyrimido[4,5-b]Quinoline, Pyrido[2,3-d:6,5-D′]Dipyrimidine and Indeno[2′,1′:5,6]Pyrido [2,3-d]Pyrimidine in Water. J. Heterocycl. Chem. 2016, 53 (6), 2084–2090. 10.1002/jhet.2480. [DOI] [Google Scholar]
- Al-Awadi N. A.; Abdelkhalik M. M.; Abdelhamid I. A.; Elnagdi M. H. Pyrolytic Methods in Organic Synthesis: Novel Routes for the Synthesis of 3-Oxoalkanenitriles, 2-Acyl Anilines, and 2-Aroyl Anilines. Synlett 2007, 2007 (No. 19), 2979–2982. 10.1055/S-2007-992355. [DOI] [Google Scholar]
- Mohamed M. F.; Mohamed M. S.; Fathi M. M.; Shouman S. A.; Abdelhamid I. A. Chalcones Incorporated Pyrazole Ring Inhibit Proliferation, Cell Cycle Progression, Angiogenesis and Induce Apoptosis of MCF7 Cell Line. Anticancer. Agents Med. Chem. 2014, 14 (9), 1282–1292. 10.2174/187152061409141010114547. [DOI] [PubMed] [Google Scholar]
- Abdullah A. H.Faculty of Science, Department of Chemistry: Synthesis of Bis(Functional) Compounds. Ph.D. Thesis, Cairo University, 2023. [Google Scholar]
- Salem M. E.; Darweesh A. F.; Elwahy A. H. M. An Expedient Synthesis of Novel Bis[Thienopyridines] Linked to Arene or Heteroarene Core as Novel Hybrid Molecules. Arkivoc 2020, 2020 (Part vi), 312–329. 10.24820/ARK.5550190.P011.297. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.











