Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Mar;61(3):373–379. doi: 10.1104/pp.61.3.373

Low Temperature Spectral Properties of Subchloroplast Fractions Purified from Spinach 1

Kimiyuki Satoh 1, Warren L Butler 1
PMCID: PMC1091871  PMID: 16660296

Abstract

Spinach (Spinacia oleracea L.) chloroplasts solubilized by digitonin were separated into five fractions by sucrose density gradient centrifugation. Three of the fractions, FI, FII, and FIII, corresponding to photosystem I, photosystem II, and the chlorophyll a/b complex, were purified further by two steps of diethylaminoethyl-cellulose chromatography followed by electrofocusing on an Ampholine column. The polypeptide patterns of the fractions were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the spectral properties of the fractions at −196 C determined by absorption spectra, fourth derivative curves of the absorption spectra, fluorescence emission spectra, and fluorescence excitation spectra. The activity of purified FII (photosystem II) was also assayed by the photoreduction of dichlorophenol-indophenol at room temperature using 1,5-diphenylcarbohydrazine as the electron donor and by the photoreduction of C-550 at −196 C. The different fractions showed unique polypeptide patterns and unique sets of low temperature-absorbing forms of chlorophyll. The fluorescence emission spectra of FI, FII, and FIII at −196 C were also unique with maxima at 734, 685 and 681 nm, respectively. FI showed negligible emission at wavelengths shorter than 700 nm and the long wavelength tails of FII and FIII in the 730 nm region were relatively small (approximately 10% of emission of their wavelength maxima). Addition of 0.1% Triton to FI and FII caused the longer wavelength absorbing forms of chlorophyll to shift to 670 nm and the fluorescence emission maxima (of both fractions) to shift to 679 nm at −196 C with an increase in the yield of fluorescence especially in the case of FI.

Full text

PDF
373

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUTLER W. L. A far-red absorbing form of chlorophyll. in vivo. Arch Biochem Biophys. 1961 May;93:413–422. doi: 10.1016/0003-9861(61)90287-9. [DOI] [PubMed] [Google Scholar]
  3. Boardman N. K., Thorne S. W. Sensitive fluorescence method for the determination of chlorophyll a-chlorophyll b ratios. Biochim Biophys Acta. 1971 Nov 2;253(1):222–231. doi: 10.1016/0005-2728(71)90248-9. [DOI] [PubMed] [Google Scholar]
  4. Butler W. L. Absorption spectroscopy of biological materials. Methods Enzymol. 1972;24:3–25. doi: 10.1016/0076-6879(72)24052-6. [DOI] [PubMed] [Google Scholar]
  5. Butler W. L., Kitajima M. Energy transfer between photosystem II and photosystem I in chloroplasts. Biochim Biophys Acta. 1975 Jul 8;396(1):72–85. doi: 10.1016/0005-2728(75)90190-5. [DOI] [PubMed] [Google Scholar]
  6. Butler W. L., Strasser R. J. Tripartite model for the photochemical apparatus of green plant photosynthesis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3382–3385. doi: 10.1073/pnas.74.8.3382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kitajima M., Butler W. L. Excitation spectra for photosystem I and photosystem II in chloroplasts and the spectral characteristics of the distributions of quanta between the two photosystems. Biochim Biophys Acta. 1975 Dec 11;408(3):297–305. doi: 10.1016/0005-2728(75)90131-0. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Satoh K., Strasser R., Butler W. L. A demonstration of energy transfer from photosystem II to photosystem I in chloroplasts. Biochim Biophys Acta. 1976 Aug 13;440(2):337–345. doi: 10.1016/0005-2728(76)90068-2. [DOI] [PubMed] [Google Scholar]
  10. Strasser R. J., Butler W. L. Energy transfer and the distribution of excitation energy in the photosynthetic apparatus of spinach chloroplasts. Biochim Biophys Acta. 1977 May 11;460(2):230–238. doi: 10.1016/0005-2728(77)90209-2. [DOI] [PubMed] [Google Scholar]
  11. Strasser R. J., Butler W. L. Energy transfer in the photochemical apparatus of flashed bean leaves. Biochim Biophys Acta. 1976 Dec 6;449(3):412–419. doi: 10.1016/0005-2728(76)90152-3. [DOI] [PubMed] [Google Scholar]
  12. Strasser R. J., Butler W. L. Fluorescence emission spectra of photosystem I, photosystem II and the light-harvesting chlorophyll a/b complex of higher plants. Biochim Biophys Acta. 1977 Nov 17;462(2):307–313. doi: 10.1016/0005-2728(77)90129-3. [DOI] [PubMed] [Google Scholar]
  13. Strasser R. J., Butler W. L. The yield of energy transfer and the spectral distribution of excitation energy in the photochemical apparatus of flashed bean leaves. Biochim Biophys Acta. 1977 Nov 17;462(2):295–306. doi: 10.1016/0005-2728(77)90128-1. [DOI] [PubMed] [Google Scholar]
  14. Wessels J. S., van Alphen-Van Waveren, Voorn G. Isolation and properties of particles containing the reaction center complex of photosystem II from spinach chloroplasts. Biochim Biophys Acta. 1973 Apr 5;292(3):741–752. doi: 10.1016/0005-2728(73)90021-2. [DOI] [PubMed] [Google Scholar]
  15. Yamashita T., Butler W. L. Inhibition of chloroplasts by UV-irradiation and heat-treatment. Plant Physiol. 1968 Dec;43(12):2037–2040. doi: 10.1104/pp.43.12.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES