Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Apr;61(4):477–480. doi: 10.1104/pp.61.4.477

Malate Synthesis by Dark Carbon Dioxide Fixation in Leaves 1

Carolyn Levi 1,2,3, John T Perchorowicz 1,2, Martin Gibbs 1
PMCID: PMC1091900  PMID: 16660319

Abstract

The rates of dark CO2 fixation and the label distribution in malate following dark 14CO2 fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark 14CO2 fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO2 at rates of 1.4, 3.4, 0.23, and 1.0 μmoles of CO2/mg of chlorophyll· hour, respectively. Net CO2 fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO2 for the duration of the 23-hour experiment.

A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the β-carboxyl (C4) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C4 as much as 15 to 20%.

The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO2 fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix 14CO2 more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradbeer J. W., Ranson S. L., Stiller M. Malate Synthesis in Crassulacean Leaves. I. The Distribution of C in Malate of Leaves Exposed to CO(2) in the Dark. Plant Physiol. 1958 Jan;33(1):66–70. doi: 10.1104/pp.33.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cockburn W., McAulay A. The pathway of carbon dioxide fixation in crassulacean plants. Plant Physiol. 1975 Jan;55(1):87–89. doi: 10.1104/pp.55.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hatch M. D. Synthesis of L-malate-4- 14 C and determination of label in the C-4 carboxyl of L-malate. Anal Biochem. 1972 May;47(1):174–183. doi: 10.1016/0003-2697(72)90290-4. [DOI] [PubMed] [Google Scholar]
  5. Johnson H. S., Hatch M. D. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem J. 1970 Sep;119(2):273–280. doi: 10.1042/bj1190273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laber L. J., Latzko E., Gibbs M. Photosynthetic path of carbon dioxide in spinach and corn leaves. J Biol Chem. 1974 Jun 10;249(11):3436–3441. [PubMed] [Google Scholar]
  7. NOSSAL P. M. Estimation of L-malate and fumarate by malic decarboxylase of Lactobacillus arabinosus. Biochem J. 1952 Jan;50(3):349–355. doi: 10.1042/bj0500349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  9. Sutton B. G., Osmond C. B. Dark Fixation of CO(2) by Crassulacean Plants: Evidence for a Single Carboxylation Step. Plant Physiol. 1972 Sep;50(3):360–365. doi: 10.1104/pp.50.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. UTTER M. F. Interrelationships of oxalacetic and l-malic acids in carbon dioxide fixation. J Biol Chem. 1951 Feb;188(2):847–863. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES