Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Apr;61(4):544–548. doi: 10.1104/pp.61.4.544

Characteristics of a Galactose-adapted Sugarcane Cell Line Grown in Suspension Culture 1

Andrew Maretzki 1, Margaret Thom 1
PMCID: PMC1091914  PMID: 16660333

Abstract

Although d-galactose is normally toxic to sugarcane (Saccharum sp.) cells, a cell line that grows on 100 mm galactose has been propagated. Nonadapted cells in a medium containing galactose instead of sucrose accumulate UDP-galactose; these cells also have much lower UDP-galactose 4-epimerase (EC 5.1.3.2) activity than do adapted cells. This enzyme may determine whether or not galactose will cause toxicity symptoms to develop. The growth rate of galactose-adapted cells is similar to most cell lines on several other carbohydrates. The galactose-adapted cells are also similar to sucrose stock cells in cell wall composition and sugar phosphate concentrations, but, like the nonadapted cells, accumulate free galactose.

Full text

PDF
544

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D. B., Ray P. M. Relation between Effects of Auxin on Cell Wall Synthesis and Cell Elongation. Plant Physiol. 1965 Mar;40(2):360–368. doi: 10.1104/pp.40.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke D., Kaufman P., McNeil M., Albersheim P. The Structure of Plant Cell Walls: VI. A Survey of the Walls of Suspension-cultured Monocots. Plant Physiol. 1974 Jul;54(1):109–115. doi: 10.1104/pp.54.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fan D. F., Feingold D. S. Nucleoside Diphosphate-sugar 4-Epimerases I. Uridine Diphosphate Glucose 4-Epimerase of Wheat Germ. Plant Physiol. 1969 Apr;44(4):599–604. doi: 10.1104/pp.44.4.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GINSBURG V., HASSID W. Z., STUMPF P. K. The isolation of uridine diphosphate derivatives of D-glucose, D-galactose, D-xylose, and L-arabinose from mung bean seedlings. J Biol Chem. 1956 Dec;223(2):977–983. [PubMed] [Google Scholar]
  5. HASSID W. Z., PUTMAN E. W., GINSBURG V. Metabolism of galactose in Canna leaves and wheat seedlings. Biochim Biophys Acta. 1956 Apr;20(1):17–22. doi: 10.1016/0006-3002(56)90256-6. [DOI] [PubMed] [Google Scholar]
  6. ISSELBACHER K. J. A mammalian uridinediphosphate galactose pyrophosphorylase. J Biol Chem. 1958 May;232(1):429–444. [PubMed] [Google Scholar]
  7. Maretzki A., Thom M. Membrane transport of sugars in cell suspensions of sugarcane: I. Evidence for sites and specificity. Plant Physiol. 1972 Feb;49(2):177–182. doi: 10.1104/pp.49.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McNab J. M., Villemez C. L., Albersheim P. Biosynthesis of galactan by a particulate enzyme preparation from Phaseolus aureus seedlings. Biochem J. 1968 Jan;106(2):355–360. doi: 10.1042/bj1060355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ordin L., Bonner J. Effect of Galactose on Growth and Metabolism of Avena Coleoptile Sections. Plant Physiol. 1957 May;32(3):212–215. doi: 10.1104/pp.32.3.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Roberts C. F. Enzyme lesions in galactose non-utilising mutants of Aspergillus nidulans. Biochim Biophys Acta. 1970 Feb 24;201(2):267–283. doi: 10.1016/0304-4165(70)90301-6. [DOI] [PubMed] [Google Scholar]
  11. Roberts R. M., Heishman A., Wicklin C. Growth Inhibition and Metabolite Pool Levels in Plant Tissues Fed d-Glucosamine and d-Galactose. Plant Physiol. 1971 Jul;48(1):36–42. doi: 10.1104/pp.48.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Verma D. C., Dougall D. K. Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures. Plant Physiol. 1977 Jan;59(1):81–85. doi: 10.1104/pp.59.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES