Abstract
To test the hypothesis (Plant Physiology 59: 155-157) that monocotyledons contain a unique oligomycin-insensitive ATPase, we prepared submitochondrial particles and a soluble fraction from sonicated corn mitochondria (Zea mays L. cv. Earliking). Although the ATPase activity of the whole sonicate was relatively insensitive to oligomycin, the corn submitochondrial particles possessed an ATPase activity that was nearly completely inhibited by oligomycin, and was activated by trypsin. This ATPase is similar to that from other sources (plants, animals, and microorganisms). The soluble fraction also contained an active ATPase, which was inhibited by azide and stimulated by sodium chloride and trypsin. The soluble fraction differed from other F1-ATPases in that it was cold-stable.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackmon W. J., Moreland D. E. Adenosine triphosphatase activity associated with mung bean mitochondria. Plant Physiol. 1971 Apr;47(4):532–536. doi: 10.1104/pp.47.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubmeyer C., Duncan I., Spencer M. Partial characterization of a soluble ATPase from pea cotyledon mitochondria. Can J Biochem. 1977 Aug;55(8):812–818. doi: 10.1139/o77-120. [DOI] [PubMed] [Google Scholar]
- Jung D. W., Hanson J. B. Respiratory activation of 2,4-dinitrophenol-stimulated ATPase activity in plant mitochondria. Arch Biochem Biophys. 1973 Sep;158(1):139–148. doi: 10.1016/0003-9861(73)90606-1. [DOI] [PubMed] [Google Scholar]
- Jung D. W., Laties G. G. Trypsin-induced ATPase Activity in Potato Mitochondria. Plant Physiol. 1976 Apr;57(4):583–588. doi: 10.1104/pp.57.4.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Malhotra S. S., Spencer M. Preparation and properties of purified (Na+ plus K+)-stimulated mitochondrial ATPase from germinating pea seeds. Can J Biochem. 1974 Jun;52(6):491–499. doi: 10.1139/o74-073. [DOI] [PubMed] [Google Scholar]
- Mozersky S. M., Pettinati J. D., Kolman S. D. An improved method for the determination of orthophosphate suitable for assay of adenosine triphosphatase activity. Anal Chem. 1966 Aug;38(9):1182–1187. doi: 10.1021/ac60241a015. [DOI] [PubMed] [Google Scholar]
- Penefsky H. S., Warner R. C. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VI. Studies on the mechanism of cold inactivation of mitochondrial adenosine triphosphatase. J Biol Chem. 1965 Dec;240(12):4694–4702. [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Solomos T., Malhotra S. S., Prasad S., Malhotra S. K., Spencer M. Biochemical and structural changes in mitochondria and other cellular components of pea cotyledons during germination. Can J Biochem. 1972 Jul;50(7):725–737. doi: 10.1139/o72-101. [DOI] [PubMed] [Google Scholar]
- Sperk G., Tuppy H. Differences between Adenosine Triphosphatases from Monocotylous and Dicotylous Plants. Plant Physiol. 1977 Feb;59(2):155–157. doi: 10.1104/pp.59.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
