Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Apr;61(4):617–623. doi: 10.1104/pp.61.4.617

Trypsin Inhibitor in Mung Bean Cotyledons

Purification, Characteristics, Subcellular Localization, and Metabolism 1

Maarten J Chrispeels 1, Bruno Baumgartner 1
PMCID: PMC1091929  PMID: 16660348

Abstract

Trypsin inhibitor was purified to homogeneity from seeds of the mung bean (Vigna radiata [L.] Wilczek). The protease inhibitor has the following properties: inhibitory activity toward trypsin, but not toward chymotrypsin; isoelectric point at pH 5.05; molecular weight of 11,000 to 12,000 (sodium dodecyl sulfate gel electrophoresis) or 14,000 (gel filtration); immunological cross-reactivity against extracts of black gram and black-eyed pea, but not against soybean; no inhibitory activity against vicilin peptidohydrolase, the principal endopeptidase in the cotyledons of mung bean seedlings.

The trypsin inhibitor content of the cotyledons declines in the course of seedling growth and the presence of an inactivating factor can be demonstrated by incubating crude extracts in the presence of β-mercaptoethanol. This inactivating factor may be a protease as vicilin peptidohydrolase rapidly inactivates the trypsin inhibitor. Removal of trypsin inhibitory activity from crude extracts by means of a trypsin affinity column does not result in an enhancement of protease activity in the extracts.

The intracellular localization of trypsin inhibitor was determined by fractionation of crude extracts on isopycnic sucrose gradients and by cytochemistry with fluorescent antibodies. Both methods indicate that trypsin inhibitor is associated with the cytoplasm and not with the protein bodies where reserve protein hydrolysis occurs. No convincing evidence was obtained which indicates that the catabolism of trypsin inhibitor during germination and seedling growth is causally related to the onset of reserve protein breakdown.

Full text

PDF
617

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumgartner B., Chrispeels M. J. Partial characterization of a protease inhibitor which inhibits the major endopeptidase present in the cotyledons of mung beans. Plant Physiol. 1976 Jul;58(1):1–6. doi: 10.1104/pp.58.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumgartner B., Chrispeels M. J. Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem. 1977 Jul 15;77(2):223–233. doi: 10.1111/j.1432-1033.1977.tb11661.x. [DOI] [PubMed] [Google Scholar]
  3. Chrispeels M. J., Baumgartner B., Harris N. Regulation of reserve protein metabolism in the cotyledons of mung bean seedlings. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3168–3172. doi: 10.1073/pnas.73.9.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chrispeels M. J., Boulter D. Control of storage protein metabolism in the cotyledons of germinating mung beans: role of endopeptidase. Plant Physiol. 1975 Jun;55(6):1031–1037. doi: 10.1104/pp.55.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRAENKEL-CONRAT H., BEAN R. C., DUCAY E. D., OLCOTT H. S. Isolation and characterization of a trypsin inhibitor from lima beans. Arch Biochem Biophys. 1952 Jun;37(2):393–407. doi: 10.1016/0003-9861(52)90200-2. [DOI] [PubMed] [Google Scholar]
  6. Gennis L. S., Cantor C. R. Double-headed protease inhibitors from black-eyed peas. I. Purification of two new protease inhibitors and the endogenous protease by affinity chromatography. J Biol Chem. 1976 Feb 10;251(3):734–740. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Ternynck T., Avrameas S. Polyacrylamide-protein immunoadsorbents prepared with glutaraldehyde. FEBS Lett. 1972 Jun 1;23(1):24–28. doi: 10.1016/0014-5793(72)80274-6. [DOI] [PubMed] [Google Scholar]
  9. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES