Abstract
Excised shoot tips from 10-day-old etiolated pea (Pisum sativum L. cv. Alaska) seedlings were incubated in solutions of chloramphenicol, cycloheximide, and lincomycin at different concentrations during periods of 0, 4, 8, and 12 hours of irradiation with high intensity white light. Enzyme extracts were prepared from the whole shoot tips and compared with extracts from nontreated shoot tips for their capacity to synthesize ent-kaurene from mevalonate. In control samples, kaurene synthesis increased during the first 8 hours of irradiation and decreased after 12 hours. Chlorophyll content increased steadily up to 12 hours of irradiation. Chloramphenicol and cycloheximide reduced both kaurene synthesis and chlorophyll formation to a similar extent during all periods of irradiation, the reduction being greatest after 8 hours of irradiation. Lincomycin, a specific inhibitor of the formation of chloroplast ribosomes in detached pea shoot tips, did not significantly affect kaurene synthesis activity but strongly inhibited chlorophyll formation. It is tentatively concluded that the increase in kaurene synthesis activity during normal photomorphogenesis in pea seedlings is due to photoinduction of de novo synthesis of one or more proteins involved in the biosynthetic pathway from mevalonate to kaurene.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson L. A., Smillie R. M. Binding of chloramphenicol by ribosomes from chloroplasts. Biochem Biophys Res Commun. 1966 May 25;23(4):535–539. doi: 10.1016/0006-291x(66)90762-5. [DOI] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ecklund P. R., Moore T. C. Correlations of Growth Rate and De-etiolation with Rate of Ent-Kaurene Biosynthesis in Pea (Pisum sativum L.). Plant Physiol. 1974 Jan;53(1):5–10. doi: 10.1104/pp.53.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis R. J., Hartley M. R. Sites of synthesis of chloroplast proteins. Nature. 1971 Oct 13;233(5320):193–196. [PubMed] [Google Scholar]
- Ellis R. J., Macdonald I. R. Specificity of cycloheximide in higher plant systems. Plant Physiol. 1970 Aug;46(2):227–232. doi: 10.1104/pp.46.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis R. J. [Chloroplast ribosomes: stereospecificity of inhibition by chloramphenicol]. Science. 1969 Jan 31;163(3866):477–478. doi: 10.1126/science.163.3866.477. [DOI] [PubMed] [Google Scholar]
- Evans A., Smith H. Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc Natl Acad Sci U S A. 1976 Jan;73(1):138–142. doi: 10.1073/pnas.73.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frost R. G., West C. A. Properties of Kaurene Synthetase from Marah macrocarpus. Plant Physiol. 1977 Jan;59(1):22–29. doi: 10.1104/pp.59.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igarashi K., Ishitsuka H., Kaji A. Comparative studies on the mechanism of action of lincomycin, streptomycin, and erythromycin. Biochem Biophys Res Commun. 1969 Oct 22;37(3):499–504. doi: 10.1016/0006-291x(69)90943-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Loomis W. D. Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 1974;31:528–544. doi: 10.1016/0076-6879(74)31057-9. [DOI] [PubMed] [Google Scholar]
- Margulies M. M. Effect of Chloramphenicol on Light Dependent Development of Seedlings of Phaseolus vulgaris var. Black Valentine, With Particular Reference to Development of Photosynthetic Activity. Plant Physiol. 1962 Jul;37(4):473–480. doi: 10.1104/pp.37.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simcox P. D., Dennis D. T., West C. A. Kaurene synthetase from plastids of developing plant tissues. Biochem Biophys Res Commun. 1975 Sep 2;66(1):166–172. doi: 10.1016/s0006-291x(75)80309-3. [DOI] [PubMed] [Google Scholar]
