Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Jun;61(6):1010–1013. doi: 10.1104/pp.61.6.1010

Subcellular Localization of Isocitrate Lyase in Nongreen Tissue Culture Cells 1

Larry Hunt 1, John J Skvarla 1, John S Fletcher 1
PMCID: PMC1092030  PMID: 16660406

Abstract

Density gradient centrifugation and electron microscopy were used to establish that isocitrate lyase present in Rosa cv. Paul's Scarlet cells was located in the mitochondria and not other membrane fractions. The enzyme may be important in glycine and serine synthesis. A comparison between the enzymic activity of isocitrate lyase and the amount of glycine and serine synthesized during logarithmic growth indicated that the activity was great enough to account for all of the carbon entering these amino acids during that stage of growth.

Full text

PDF
1010

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  2. Dougall D. K. Biosynthesis of Protein Amino Acids in Plant Tissue Culture II Further Isotope Competition Experiments Using Protein Amino Acids. Plant Physiol. 1966 Nov;41(9):1411–1415. doi: 10.1104/pp.41.9.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Feierabend J., Beevers H. Developmental studies on microbodies in wheat leaves : I. Conditions influencing enzyme development. Plant Physiol. 1972 Jan;49(1):28–32. doi: 10.1104/pp.49.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fletcher J. S., Beevers H. Influence of cycloheximide on the synthesis and utilization of amino acids in suspension cultures. Plant Physiol. 1971 Sep;48(3):261–264. doi: 10.1104/pp.48.3.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Godavari H. R., Badour S. S., Waygood E. R. Isocitrate lyase in green leaves. Plant Physiol. 1973 May;51(5):863–867. doi: 10.1104/pp.51.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harland J., Jackson J. F., Yeoman M. M. Changes in some enzymes involved in DNA biosynthesis following induction of division in cultured plant cells. J Cell Sci. 1973 Jul;13(1):121–138. doi: 10.1242/jcs.13.1.121. [DOI] [PubMed] [Google Scholar]
  7. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  8. Huang A. H., Beevers H. Isolation of microbodies from plant tissues. Plant Physiol. 1971 Nov;48(5):637–641. doi: 10.1104/pp.48.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunt L., Fletcher J. S. Estimated Drainage of Carbon from the Tricarboxylic Acid Cycle for Protein Synthesis in Suspension Cultures of Paul's Scarlet Rose Cells. Plant Physiol. 1976 Feb;57(2):304–307. doi: 10.1104/pp.57.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MORTON R. K., WELLS J. R. ISOCITRATE-LYASE AND THE FORMATION OF ALPHA-KETO GAMMA-HYDROXYGLUTARIC ACID IN OXALIS. Nature. 1964 Feb 1;201:477–479. doi: 10.1038/201477a0. [DOI] [PubMed] [Google Scholar]
  12. Miflin B. J., Beevers H. Isolation of intact plastids from a range of plant tissues. Plant Physiol. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moore T. S., Beevers H. Isolation and characterization of organelles from soybean suspension cultures. Plant Physiol. 1974 Feb;53(2):261–265. doi: 10.1104/pp.53.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  15. Rocha V., Ting I. P. Tissue distribution of microbody, mitochondrial, and soluble malate dehydrogenase isoenzymes. Plant Physiol. 1970 Nov;46(5):754–756. doi: 10.1104/pp.46.5.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rorth M., Jensen P. K. Determination of catalase activity by means of the Clark oxygen electrode. Biochim Biophys Acta. 1967 May 16;139(1):171–173. doi: 10.1016/0005-2744(67)90124-6. [DOI] [PubMed] [Google Scholar]
  17. Rubin H., Trelease R. N. Subcellular localization of glyoxylate cycle enzymes in Ascaris suum larvae. J Cell Biol. 1976 Aug;70(2 Pt 1):374–383. doi: 10.1083/jcb.70.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Szabo A. S., Avers C. J. Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann N Y Acad Sci. 1969 Dec 19;168(2):302–312. doi: 10.1111/j.1749-6632.1969.tb43117.x. [DOI] [PubMed] [Google Scholar]
  19. Ting I. P. Malic dehydrogenases in corn root tips. Arch Biochem Biophys. 1968 Jul;126(1):1–7. doi: 10.1016/0003-9861(68)90552-3. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES