Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Jun;61(6):1017–1022. doi: 10.1104/pp.61.6.1017

Comparative Investigation of the Action of Several Chlorosis-inducing Herbicides on the Biogenesis of Chloroplasts and Leaf Microbodies

Jürgen Feierabend 1, Brigitte Schubert 1
PMCID: PMC1092032  PMID: 16660408

Abstract

Seedlings of Triticum aestivum L. and Secale cereale L. were grown in the presence of six different (five having different chemical structures) chlorosis-inducing herbicides: aminotriazole and its derivative SDR 5175, haloxidine, Sandoz 6706, fluometuron, and EMD-IT 5914. Concentrations were applied which allowed the leaves to grow normally and to reach normal total amino nitrogen contents but evoked a complete chlorosis (less than 6% chlorophyll). The effects of the herbicides on the accumulation of several chloroplast constituents and on peroxisomal and mitochondrial marker enzyme activities were compared. Wheat and rye, in general, gave very similar results, wheat being more sensitive to unspecific inhibitory effects.

In dark-grown plants, the herbicides had no or only minor effects on the rRNA pattern and on enzyme activities of the leaves. In the light, all herbicides applied prevented the accumulation of carotenoids and of chloroplastic rRNA. Consequently, ribulose-1,5-bisphosphate carboxylase activity was virtually absent. After all herbicide treatments in light, the leaves contained only rather low catalase activity. In the presence of aminotriazole and haloxidine, the chloroplast-specific NADP-glyceraldehyde-3-phosphate dehydrogenase and the peroxisomal enzymes glycolate oxidase and hydroxypyruvate reductase had high or even normal activities, as in untreated leaves. In leaves treated with Sandoz 6706, fluometuron, or EMDIT 5914, the activities of the latter three enzymes were, in parallel, only very low. Some herbicides interfered with enzyme activities in vitro, particularly with those of catalase and of glycolate oxidase. Among mitochondrial enzymes, cytochrome c oxidase activity was either unaffected or lower, while fumarase had considerably higher activities in the herbicide-treated, as compared to untreated leaves. The specific effects on peroxisomal enzymes cannot be explained by the hypothesis of herbicide-induced photodestructions in carotene-deficient plastids. Alternative explanations for the genesis of the chlorosis are discussed.

Full text

PDF
1017

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartels P. G., Hyde A. Buoyant density studies of chloroplast and nuclear deoxyribonucleic acid from control and 3-amino-1,2,4-triazole-treated wheat seedlings, Triticum vulgare. Plant Physiol. 1970 Dec;46(6):825–830. doi: 10.1104/pp.46.6.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartels P. G., Hyde A. Chloroplast Development in 4-Chloro-5-(dimethylamino)-2-(alpha,alpha,alpha-trifluoro-m-tolyl)-3 (2H)-pyridazinone (Sandoz 6706)-treated Wheat Seedlings: A Pigment, Ultrastructural, and Ultracentrifugal Study. Plant Physiol. 1970 Jun;45(6):807–810. doi: 10.1104/pp.45.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartels P. G., Matsuda K., Siegel A., Weier T. E. Chloroplastic ribosome formation: inhibition by 3-amino-1,2,4-triazole. Plant Physiol. 1967 May;42(5):736–741. doi: 10.1104/pp.42.5.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bartels P. G., McCullough C. A new inhibitor of carotenoid synthesis in higher plants: 4-chloro-5-(dimethylamino)-2- , , ,(trifluoro-m-tolyl)-3(2H)-pyridazinone. Biochem Biophys Res Commun. 1972 Jul 11;48(1):16–22. doi: 10.1016/0006-291x(72)90337-3. [DOI] [PubMed] [Google Scholar]
  6. Ben-Aziz A., Koren E. Interference in Carotenogenesis as a Mechanism of Action of the Pyridazinone Herbicide Sandoz 6706: Accumulation of C-40 Carotenoid Precursors Inhibition of beta-Carotene Synthesis and Enhancement of Phytoene Epoxidation. Plant Physiol. 1974 Dec;54(6):916–920. doi: 10.1104/pp.54.6.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burns E. R., Buchanan G. A., Carter M. C. Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate, and pyriclor. Plant Physiol. 1971 Jan;47(1):144–148. doi: 10.1104/pp.47.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Egneus H., Heber U., Matthiesen U., Kirk M. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta. 1975 Dec 11;408(3):252–268. doi: 10.1016/0005-2728(75)90128-0. [DOI] [PubMed] [Google Scholar]
  9. Eyster H. C. CATALASE ACTIVITY IN CHLOROPLAST PIGMENT DEFICIENT TYPES OF CORN. Plant Physiol. 1950 Oct;25(4):630–638. doi: 10.1104/pp.25.4.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hilton J. L., John J. B., Christiansen M. N. Interactions of lipoidal materials and a pyridazinone inhibitor of chloroplast development. Plant Physiol. 1971 Aug;48(2):171–177. doi: 10.1104/pp.48.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Parish J. H., Kirby K. S. Reagents which reduce interactions between ribosomal RNA and rapidly labelled RNA from rat liver. Biochim Biophys Acta. 1966 Dec 21;129(3):554–562. doi: 10.1016/0005-2787(66)90070-0. [DOI] [PubMed] [Google Scholar]
  13. Urbach D., Suchanka M., Urbach W. Effect of substituted pyridazinone herbicides and of difunone (EMD-IT 5914) on carotenoid biosynthesis in green algae. Z Naturforsch C. 1976 Nov-Dec;31(11-12):653–655. [PubMed] [Google Scholar]
  14. Vaisberg A. J., Schiff J. A. Events Surrounding the Early Development of Euglena Chloroplasts: 7. Inhibition of Carotenoid Biosynthesis by the Herbicide SAN 9789 (4-Chloro-5-(methylamino)-2-(alpha,alpha,alpha,-trifluoro-m-tolyl)-3-(2H)pyridazinone) and Its Developmental Consequences. Plant Physiol. 1976 Feb;57(2):260–269. doi: 10.1104/pp.57.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES