Abstract
A chromatin-associated casein-type protein kinase has been purified 500-fold from soybean (Glycine max, var. Wayne) tissue. The enzyme can be completely dissociated from isolated chromatin in 250 millimolar (NH4)2SO4. After purification, the kinase preparation is stable for at least 6 months at 0 C. The enzyme will phosphorylate casein, phosvitin, and denatured chromatin proteins, but not histones. Only ATP will serve as a phosphate donor with an apparent Km of 8 micromolar. Five millimolar Mg2+ is required for maximal activity, but Mn2+ will support phosphorylation at a lower level. The average molecular weight as determined by sucrose gradient sedimentation and gel filtration is approximately 55,000. Under conditions of low ionic strength [less than 250 millimolar (NH4)2SO4] soybean casein kinase forms higher molecular weight aggregates with other chromosomal proteins in the preparation. The enzyme activity is not affected by cyclic AMP. Casein kinase shows a broad optimum between 7 and 8 and the isoelectric point is approximately 9. Preliminary data indicate that soybean casein kinase will not phosphorylate soybean RNA polymerases I or II, nor does it have any obvious effect on in vitro chromatin transcription by endogenous RNA polymerases.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell G. I., Valenzuela P., Rutter W. J. Phosphorylation of yeast DNA-dependent RNA polymerases in vivo and in vitro. Isolation of enzymes and identification of phosphorylated subunits. J Biol Chem. 1977 May 10;252(9):3082–3091. [PubMed] [Google Scholar]
- Chen Y. M., Lin C. Y., Chang H., Guilfoyle T. J., Key J. L. Isolation and Properties of Nuclei from Control and Auxin-treated Soybean Hypocotyl. Plant Physiol. 1975 Jul;56(1):78–82. doi: 10.1104/pp.56.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahmus M. E. Stimulation of ascites tumor RNA polymerase II by protein kinase. Biochemistry. 1976 May 4;15(9):1821–1829. doi: 10.1021/bi00654a006. [DOI] [PubMed] [Google Scholar]
- Desjardins P. R., Liew C. C., Gornall A. G. Rat liver nuclerar protein kinases. Can J Biochem. 1975 Mar;53(3):354–363. doi: 10.1139/o75-049. [DOI] [PubMed] [Google Scholar]
- Desjardins P. R., Lue P. F., Liew C. C., Gornall A. G. Purification and properties of rat liver nuclear protein kinases. Can J Biochem. 1972 Dec;50(12):1249–1259. doi: 10.1139/o72-170. [DOI] [PubMed] [Google Scholar]
- Guilfoyle T. J., Lin C. Y., Chen Y. M., Key J. L. Purification and characterization of RNA polymerase I from a higher plant. Biochim Biophys Acta. 1976 Feb 5;418(3):344–357. doi: 10.1016/0005-2787(76)90296-3. [DOI] [PubMed] [Google Scholar]
- Keller R. K., Chandra T., Schrader W. T., O'Malley B. W. Protein kinases of the chick oviduct: a study of the cytoplasmic and nuclear enzymes. Biochemistry. 1976 May 4;15(9):1958–1967. doi: 10.1021/bi00654a025. [DOI] [PubMed] [Google Scholar]
- Kish V. M., Kleinsmith L. J. Nuclear protein kinases. Evidence for their heterogeneity, tissue specificity, substrate specificities, and differential responses to cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1974 Feb 10;249(3):750–760. [PubMed] [Google Scholar]
- Kleinsmith L. J. Phosphorylation of non-histone proteins in the regulation of chromosome structure and function. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):459–475. doi: 10.1002/jcp.1040850412. [DOI] [PubMed] [Google Scholar]
- Kranias E. G., Schweppe J. S., Jungmann R. A. Phosphorylative and functional modifications of nucleoplasmic RNA polymerase II by homologous adenosine 3':5'-monophosphate-dependent protein kinase from calf thymus and by heterologous phosphatase. J Biol Chem. 1977 Oct 10;252(19):6750–6758. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langan T. A. Protein kinases and protein kinase substrates. Adv Cyclic Nucleotide Res. 1973;3:99–153. [PubMed] [Google Scholar]
- Lin C. Y., Guilfoyle T. J., Chen Y. M., Nagao R. T., Key J. L. The separation of RNA polymerases I and II achieved by fractionation of plant chromatin. Biochem Biophys Res Commun. 1974 Sep 23;60(2):498–506. doi: 10.1016/0006-291x(74)90268-x. [DOI] [PubMed] [Google Scholar]
- Lin P. P., Key J. L. Lysine-rich histone H1 kinase from soybean hypocotyl. Biochem Biophys Res Commun. 1976 Nov 22;73(2):396–403. doi: 10.1016/0006-291x(76)90721-x. [DOI] [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- Murray M. G., Key J. L. 2,4-Dichlorophenoxyacetic Acid-enhanced Phosphorylation of Soybean Nuclear Proteins. Plant Physiol. 1978 Feb;61(2):190–198. doi: 10.1104/pp.61.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
- Schendel P. F., Wells R. D. The synthesis and purification of (gamma-32P)-adenosine triphosphate with high specific activity. J Biol Chem. 1973 Dec 10;248(23):8319–8321. [PubMed] [Google Scholar]
- Schwartz L. B., Roeder R. G. Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase I from the mouse myeloma, MOPC 315. J Biol Chem. 1974 Sep 25;249(18):5898–5906. [PubMed] [Google Scholar]
- Takeda M., Matsumura S., Nakaya Y. Nuclear phosphoprotein kinases from rat liver. J Biochem. 1974 Apr;75(4):743–751. doi: 10.1093/oxfordjournals.jbchem.a130447. [DOI] [PubMed] [Google Scholar]
