Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Jul;62(1):112–115. doi: 10.1104/pp.62.1.112

Kinetic Determination of the Genome Size of the Pea 1

William R Pearson 1, Shelley L Smith 1, Jung-Rung Wu 1, James Bonner 1
PMCID: PMC1092067  PMID: 16660447

Abstract

Renaturation of pea (Pisum sativum) DNA has been used to estimate the size of the pea genome and the fraction of pea DNA containing repeated DNA sequences. Pea DNA renaturation and single copy tracer renaturation indicate that the size of the pea genome is 0.5 picograms. More than 70% of pea DNA sequences are repeated from 100 to 5,000 times.

Full text

PDF
112

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRNSTIEL M. L., CHIPCHASE M. I., FLAMM W. G. ON THE CHEMISTRY AND ORGANISATION OF NUCLEOLAR PROTEINS. Biochim Biophys Acta. 1964 May 18;87:111–122. doi: 10.1016/0926-6550(64)90052-0. [DOI] [PubMed] [Google Scholar]
  2. Britten R. J., Graham D. E., Neufeld B. R. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418. doi: 10.1016/0076-6879(74)29033-5. [DOI] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Commerford S. L. Iodination of nucleic acids in vitro. Biochemistry. 1971 May 25;10(11):1993–2000. doi: 10.1021/bi00787a005. [DOI] [PubMed] [Google Scholar]
  5. Davidson E. H., Galau G. A., Angerer R. C., Britten R. J. Comparative aspects of DNA organization in Metazoa. Chromosoma. 1975 Jul 21;51(3):253–259. doi: 10.1007/BF00284818. [DOI] [PubMed] [Google Scholar]
  6. Holmes D. S., Bonner J. Sequence composition of rat nuclear deoxyribonucleic acid and high molecular weight nuclear ribonucleic acid. Biochemistry. 1974 Feb 26;13(5):841–848. doi: 10.1021/bi00702a001. [DOI] [PubMed] [Google Scholar]
  7. Laird C. D. Chromatid structure: relationship between DNA content and nucleotide sequence diversity. Chromosoma. 1971 Mar 16;32(4):378–406. doi: 10.1007/BF00285251. [DOI] [PubMed] [Google Scholar]
  8. Pearson W. R., Davidson E. H., Britten R. J. A program for least squares analysis of reassociation and hybridization data. Nucleic Acids Res. 1977 Jun;4(6):1727–1737. doi: 10.1093/nar/4.6.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Smith D. B., Rimpau J., Flavell R. B. Interspersion of different repeated sequences in the wheat genome revealed by interspecies DNA/DNA hybridisation. Nucleic Acids Res. 1976 Oct;3(10):2811–2825. doi: 10.1093/nar/3.10.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. VAN'T HOF J., SPARROW A. H. A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. Proc Natl Acad Sci U S A. 1963 Jun;49:897–902. doi: 10.1073/pnas.49.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Walbot V., Dure L. S., 3rd Developmental biochemistry of cotton seed embryogenesis and germination. VII. Characterization of the cotton genome. J Mol Biol. 1976 Mar 15;101(4):503–536. doi: 10.1016/0022-2836(76)90242-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES