Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Aug;62(2):204–209. doi: 10.1104/pp.62.2.204

Oxygen Effects on Photosynthesis and 14C Metabolism in Desert Plants

Tatyana A Glacoleva 1, Oleg V Zalensky 1, Adolf T Mokronosov 2
PMCID: PMC1092090  PMID: 16660486

Abstract

The effect of 1% and 21% O2 upon 14CO2 assimilation by desert plants exposed for 10 to 90 seconds has been studied. The plants studied can be divided into three groups with respect to O2. The C3 plants display the usual Warburg effect. No changes could be observed in the intensity of photosynthesis as a function of O2 content in another group of plants (showing signs of Crassulacean acid metabolism). In still another group of plants (C4 plants) the stimulating effect of O2 on photosynthesis could be detected. In C3 plants, O2 inhibits the processing of carbon through the Calvin cycle intermediates. The involvement of carbon in the glycolate pathway fails to explain completely the inhibiting effect of O2 on photosynthesis. It is assumed that O2 inhibits the enzymes of the Calvin cycle. In C4 plants O2 stimulates the incorporation of 14C into malate and aspartate. The incorporation of 14C into the intermediates of the Calvin cycle in C4 plants is inhibited much like that in typical C3 plants.

Full text

PDF
204

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowes G., Ogren W. L., Hageman R. H. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun. 1971 Nov 5;45(3):716–722. doi: 10.1016/0006-291x(71)90475-x. [DOI] [PubMed] [Google Scholar]
  2. Chollet R. 14CO2 fixation and glycolate metabolism in the dark in isolated maize (Zea mays L.) bundle sheath strands. Arch Biochem Biophys. 1974 Aug;163(2):521–529. doi: 10.1016/0003-9861(74)90510-4. [DOI] [PubMed] [Google Scholar]
  3. Coombs J., Wittingham C. P. The mechanism of inhibition of photosynthesis by high partial pressures of oxygen in Chlorella. Proc R Soc Lond B Biol Sci. 1966 Apr 19;164(996):511–520. doi: 10.1098/rspb.1966.0046. [DOI] [PubMed] [Google Scholar]
  4. Huber S. C., Edwards G. E. A highactivity ATP translocator in mesophyll chloroplasts of Digitaria sanguinalis, a plant having the C-4 dicarboxylic acid pathway of photosynthesis. Biochim Biophys Acta. 1976 Sep 13;440(3):675–687. doi: 10.1016/0005-2728(76)90050-5. [DOI] [PubMed] [Google Scholar]
  5. Zelitch I. Investigation on photorespiration with a sensitive C-assay. Plant Physiol. 1968 Nov;43(11):1829–1837. doi: 10.1104/pp.43.11.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES