Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Aug;62(2):215–219. doi: 10.1104/pp.62.2.215

Conversion of Labeled Substrates to Sugars, Cell Wall Polysaccharides, and Tartaric Acid in Grape Berries

Kazumi Saito 1,2, Zenzaburo Kasai 1,2
PMCID: PMC1092092  PMID: 16660488

Abstract

[U-14C]Sucrose, myo-[U-14C]inositol, [6-14C]- and [U-14C]glucuronate, UDP-[U-14C]glucuronate, [U-14C]gluconate, and l-[1-14C]ascorbic acid were fed into grape berries, Vitis labrusca L. cv. Delaware, at intervals throughout the ripening process and incorporation of 14C into several metabolites was studied.

[U-14C]Sucrose was the most effective precursor of cellulose in young grape berries and of glucose and fructose in mature berries. On the other hand, UDP-[U-14C]glucuronate was the best precursor of pectic substance, followed by [14C]glucuronate and myo-[U-14C]inositol. l-[1-14C]Ascorbic acid was the most effective precursor of tartaric acid. In young berries, [U-14C]sucrose and [U-14C]gluconate also produced labeled tartaric acid, the latter a somewhat better precursor in the 3 weeks following flowering. The remaining test compounds were only poor sources of 14C for tartaric acid although all three, glucuronate, UDP-glucuronate, and myo-inositol, were utilized by the grape berry for pectin biosynthesis.

These results strongly indicate that tartaric acid is synthesized by a C-1 oxidation mechanism of hexose in young grape berries.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERSHEIM P., NEUKOM H. DEUEL H: Splitting of pectin chain molecules in neutral solutions. Arch Biochem Biophys. 1960 Sep;90:46–51. doi: 10.1016/0003-9861(60)90609-3. [DOI] [PubMed] [Google Scholar]
  2. BARBER H. A., ELBEIN A. D., HASSID W. Z. THE SYNTHESIS OF CELLULOSE BY ENZYME SYSTEMS FROM HIGHER PLANTS. J Biol Chem. 1964 Dec;239:4056–4061. [PubMed] [Google Scholar]
  3. DOWBEN R. M. On the hydrolysis and oxidation of glucuronolactone. Biochim Biophys Acta. 1959 Feb;31(2):454–458. doi: 10.1016/0006-3002(59)90020-4. [DOI] [PubMed] [Google Scholar]
  4. FINKLE B. J., KELLY S., LOEWUS F. A. Metabolism of d-[I-14C]- and d-[6-14C] glucuronolactone by the ripening strawberry. Biochim Biophys Acta. 1960 Feb 26;38:332–339. doi: 10.1016/0006-3002(60)91249-x. [DOI] [PubMed] [Google Scholar]
  5. Galambos J. T. The reaction of carbazole with carbohydrates. I. Effect of borate and sulfamate on the carbazole color of sugars. Anal Biochem. 1967 Apr;19(1):119–132. doi: 10.1016/0003-2697(67)90141-8. [DOI] [PubMed] [Google Scholar]
  6. Galambos J. T. The reaction of carbazole with carbohydrates. II. Effect of borate and sulfamate on the ultraviolet absorption of sugars. Anal Biochem. 1967 Apr;19(1):133–143. doi: 10.1016/0003-2697(67)90142-x. [DOI] [PubMed] [Google Scholar]
  7. JANG R., LOEWUS F. A., SEEGMILLER C. G. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. J Biol Chem. 1956 Oct;222(2):649–664. [PubMed] [Google Scholar]
  8. Kliewer W. M. Sugars and Organic Acids of Vitis vinifera. Plant Physiol. 1966 Jun;41(6):923–931. doi: 10.1104/pp.41.6.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOEWUS F. A., KELLY S. Conversion of glucose to inositol in parsley leaves. Biochem Biophys Res Commun. 1962 Apr 20;7:204–208. doi: 10.1016/0006-291x(62)90175-4. [DOI] [PubMed] [Google Scholar]
  10. Loewus F. Inositol metabolism and cell wall formation in plants. Fed Proc. 1965 Jul-Aug;24(4):855–862. [PubMed] [Google Scholar]
  11. Roberts R. M., Loewus F. The Conversion of d-Glucose-6-C to Cell Wall Polysaccharide Material in Zea mays in Presence of High Endogenous Levels of Myoinositol. Plant Physiol. 1973 Dec;52(6):646–650. doi: 10.1104/pp.52.6.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stoddart R. W., Barrett A. J., Northcote D. H. Pectic polysaccharides of growing plant tissues. Biochem J. 1967 Jan;102(1):194–204. doi: 10.1042/bj1020194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Swanson C. A., El-Shishiny E. D. Translocation of Sugars in the Concord Grape. Plant Physiol. 1958 Jan;33(1):33–37. doi: 10.1104/pp.33.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Takimoto K., Saito K., Kasai Z. An automatic 14CO2-collecting apparatus. Radioisotopes. 1976 Sep;25(9):559–562. doi: 10.3769/radioisotopes.25.9_559. [DOI] [PubMed] [Google Scholar]
  15. Wagner G., Loewus F. A. l-Ascorbic Acid Metabolism in Vitaceae: Conversion to (+)-Tartaric Acid and Hexoses. Plant Physiol. 1974 Nov;54(5):784–787. doi: 10.1104/pp.54.5.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wagner G., Yang J. C., Loewus F. A. Stereoisomeric Characterization of Tartaric Acid Produced during l-Ascorbic Acid Metabolism in Plants. Plant Physiol. 1975 Jun;55(6):1071–1073. doi: 10.1104/pp.55.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES