Abstract
[U-14C]Sucrose, myo-[U-14C]inositol, [6-14C]- and [U-14C]glucuronate, UDP-[U-14C]glucuronate, [U-14C]gluconate, and l-[1-14C]ascorbic acid were fed into grape berries, Vitis labrusca L. cv. Delaware, at intervals throughout the ripening process and incorporation of 14C into several metabolites was studied.
[U-14C]Sucrose was the most effective precursor of cellulose in young grape berries and of glucose and fructose in mature berries. On the other hand, UDP-[U-14C]glucuronate was the best precursor of pectic substance, followed by [14C]glucuronate and myo-[U-14C]inositol. l-[1-14C]Ascorbic acid was the most effective precursor of tartaric acid. In young berries, [U-14C]sucrose and [U-14C]gluconate also produced labeled tartaric acid, the latter a somewhat better precursor in the 3 weeks following flowering. The remaining test compounds were only poor sources of 14C for tartaric acid although all three, glucuronate, UDP-glucuronate, and myo-inositol, were utilized by the grape berry for pectin biosynthesis.
These results strongly indicate that tartaric acid is synthesized by a C-1 oxidation mechanism of hexose in young grape berries.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERSHEIM P., NEUKOM H. DEUEL H: Splitting of pectin chain molecules in neutral solutions. Arch Biochem Biophys. 1960 Sep;90:46–51. doi: 10.1016/0003-9861(60)90609-3. [DOI] [PubMed] [Google Scholar]
- BARBER H. A., ELBEIN A. D., HASSID W. Z. THE SYNTHESIS OF CELLULOSE BY ENZYME SYSTEMS FROM HIGHER PLANTS. J Biol Chem. 1964 Dec;239:4056–4061. [PubMed] [Google Scholar]
- DOWBEN R. M. On the hydrolysis and oxidation of glucuronolactone. Biochim Biophys Acta. 1959 Feb;31(2):454–458. doi: 10.1016/0006-3002(59)90020-4. [DOI] [PubMed] [Google Scholar]
- FINKLE B. J., KELLY S., LOEWUS F. A. Metabolism of d-[I-14C]- and d-[6-14C] glucuronolactone by the ripening strawberry. Biochim Biophys Acta. 1960 Feb 26;38:332–339. doi: 10.1016/0006-3002(60)91249-x. [DOI] [PubMed] [Google Scholar]
- Galambos J. T. The reaction of carbazole with carbohydrates. I. Effect of borate and sulfamate on the carbazole color of sugars. Anal Biochem. 1967 Apr;19(1):119–132. doi: 10.1016/0003-2697(67)90141-8. [DOI] [PubMed] [Google Scholar]
- Galambos J. T. The reaction of carbazole with carbohydrates. II. Effect of borate and sulfamate on the ultraviolet absorption of sugars. Anal Biochem. 1967 Apr;19(1):133–143. doi: 10.1016/0003-2697(67)90142-x. [DOI] [PubMed] [Google Scholar]
- JANG R., LOEWUS F. A., SEEGMILLER C. G. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. J Biol Chem. 1956 Oct;222(2):649–664. [PubMed] [Google Scholar]
- Kliewer W. M. Sugars and Organic Acids of Vitis vinifera. Plant Physiol. 1966 Jun;41(6):923–931. doi: 10.1104/pp.41.6.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOEWUS F. A., KELLY S. Conversion of glucose to inositol in parsley leaves. Biochem Biophys Res Commun. 1962 Apr 20;7:204–208. doi: 10.1016/0006-291x(62)90175-4. [DOI] [PubMed] [Google Scholar]
- Loewus F. Inositol metabolism and cell wall formation in plants. Fed Proc. 1965 Jul-Aug;24(4):855–862. [PubMed] [Google Scholar]
- Roberts R. M., Loewus F. The Conversion of d-Glucose-6-C to Cell Wall Polysaccharide Material in Zea mays in Presence of High Endogenous Levels of Myoinositol. Plant Physiol. 1973 Dec;52(6):646–650. doi: 10.1104/pp.52.6.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoddart R. W., Barrett A. J., Northcote D. H. Pectic polysaccharides of growing plant tissues. Biochem J. 1967 Jan;102(1):194–204. doi: 10.1042/bj1020194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson C. A., El-Shishiny E. D. Translocation of Sugars in the Concord Grape. Plant Physiol. 1958 Jan;33(1):33–37. doi: 10.1104/pp.33.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takimoto K., Saito K., Kasai Z. An automatic 14CO2-collecting apparatus. Radioisotopes. 1976 Sep;25(9):559–562. doi: 10.3769/radioisotopes.25.9_559. [DOI] [PubMed] [Google Scholar]
- Wagner G., Loewus F. A. l-Ascorbic Acid Metabolism in Vitaceae: Conversion to (+)-Tartaric Acid and Hexoses. Plant Physiol. 1974 Nov;54(5):784–787. doi: 10.1104/pp.54.5.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner G., Yang J. C., Loewus F. A. Stereoisomeric Characterization of Tartaric Acid Produced during l-Ascorbic Acid Metabolism in Plants. Plant Physiol. 1975 Jun;55(6):1071–1073. doi: 10.1104/pp.55.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
