Abstract
During adaptation of barley (Hordeum vulgare L.) seedlings to extremely high concentrations of sodium chloride in the root space, the content of galactolipids of chloroplast membranes decreased considerably. Alterations in membrane lipids were due to the high concentration of ions rather than to the increase in the water potential. Sodium chloride was accumulated in the leaf cells and affected lipid-synthesizing enzymes such as galactosyl transferase and acylase which are attached to the chloroplast envelope. The return of salt-adapted barley seedlings to a nutrient solution with low salt concentration resulted in a reversal of the observed changes. It is suggested that the decrease in content of galactolipids in biomembranes is one of the factors causing increased salt resistance in barley plants which are adapted to extreme salinity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Douce R. Site of biosynthesis of galactolipids in spinach chloroplasts. Science. 1974 Mar 1;183(4127):852–853. doi: 10.1126/science.183.4127.852. [DOI] [PubMed] [Google Scholar]
- Joyard J., Douce R. Mise en évidence et rôle des diacylglycerols de l'enveloppe des chloroplastes d'épinard. Biochim Biophys Acta. 1976 Jan 22;424(1):125–131. doi: 10.1016/0005-2760(76)90057-6. [DOI] [PubMed] [Google Scholar]
- KATES M. SIMPLIFIED PROCEDURES FOR HYDROLYSIS OR METHANOLYSIS OF LIPIDS. J Lipid Res. 1964 Jan;5:132–135. [PubMed] [Google Scholar]
- Kuiper P. J. Effect of lipids on chloride and sodium transport in bean and cotton plants. Plant Physiol. 1969 Jul;44(7):968–972. doi: 10.1104/pp.44.7.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEPAGE M. THE SEPARATION AND IDENTIFICATION OF PLANT PHOSPHOLIPIDS AND GLYCOLIPIDS BY TWO-DIMENSIONAL THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1964 Jan;13:99–103. doi: 10.1016/s0021-9673(01)95078-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Plesnicar M., Bendall D. S. The photochemical activities and electron carriers of developing barley leaves. Biochem J. 1973 Nov;136(3):803–812. doi: 10.1042/bj1360803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santarius K. A., Heber U. The kinetics of the inactivation of thylakoid membranes by freezing and high concentrations of electrolytes. Cryobiology. 1970 Sep-Oct;7(2):71–78. doi: 10.1016/0011-2240(70)90001-5. [DOI] [PubMed] [Google Scholar]