Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Sep;62(3):413–417. doi: 10.1104/pp.62.3.413

Effect of Abscisic Acid on the Gain of the Feedback Loop Involving Carbon Dioxide and Stomata 1

Dean R Dubbe 1, Graham D Farquhar 1,2, Klaus Raschke 1
PMCID: PMC1092137  PMID: 16660528

Abstract

Gains of the feedback loops involving intercellular CO2 concentration on one hand, and CO2 assimilation and stomata on the other (= assimilation loop with gain [GA] and conductance loop with gain [Gg]) were determined in detached leaves of Amaranthus powelli S. Wats., Avena sativa L., Gossypium hirsutum L., Xanthium strumarium L., and Zea mays in the absence and presence of 10−5 m (±) abscisic acid (ABA) in the transpiration stream. Determinations were made for an ambient CO2 concentration of 300 microliters per liter. In the absence of ABA, stomata were insensitive to CO2 (Gg between 0.00 and −0.02) in A. sativa, G. hirsutum, and X. strumarium, sensitive in A powelli (Gg = −0.46), and very sensitive in Z. mays (Gg = −3.6). Addition of ABA increased the absolute values of the gain of the conductance loop in A. powelli (Gg = −2.0), G. hirsutum (Gg = −0.31), and X. strumarium (Gg = −1.14). Stomata closed completely in A. sativa. In Z. mays, Gg decreased after application of ABA to a value of −0.86, but stomatal sensitivity to CO2 increased for intercellular CO2 concentrations < 100 microliters per liter. The gain of the assimilation loop increased after application of ABA in all cases, from values between 0.0 (A. powelli) and −0.21 (Z. mays) in the absence of ABA to values between −0.19 (A. powelli) and −0.43 (Z. mays) in the presence of ABA. In none of the species examined did ABA affect the photosynthetic capacity of the leaves.

The application of ABA caused stomatal narrowing which affected transpiration more than the assimilation of CO2. In the case of A. powelli the transpiration ratio decreased without a concomitant reduction of the assimilation rate.

Full text

PDF
413

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cowan I. R., Farquhar G. D. Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol. 1977;31:471–505. [PubMed] [Google Scholar]
  2. Farquhar G. D., Dubbe D. R., Raschke K. Gain of the feedback loop involving carbon dioxide and stomata: theory and measurement. Plant Physiol. 1978 Sep;62(3):406–412. doi: 10.1104/pp.62.3.406. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES