Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Sep;62(3):430–433. doi: 10.1104/pp.62.3.430

Polyamine Metabolism in Embryogenic Cells of Daucus carota

I. Changes in Intracellular Content and Rates of Synthesis

Michael J Montague 1, Joan W Koppenbrink 1, Ernest G Jaworski 1
PMCID: PMC1092140  PMID: 16660531

Abstract

Changes in the metabolism of polyamines, which seem to be involved in transcription and translation in animal systems, have been studied in cultured cells of Daucus carota (carrot) undergoing embryogenesis. Putrescine levels were elevated by as much as 2-fold over the control within 24 hours after transfer of the cells to embryogenic medium. Spermidine levels were elevated also but spermine levels appeared to be lower in embryogenic cells. Embryogenic cells incorporated [14C]arginine into putrescine at two times the rate of control cells. These changes suggest that polyamines may be involved in cellular differentiation during embryogenesis.

Full text

PDF
430

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachrach U., Don S., Wiener H. Polyamines in normal and in virus-transformed chick embryo fibroblasts. Cancer Res. 1974 Jul;34(7):1577–1580. [PubMed] [Google Scholar]
  2. Beer S. V., Kosuge T. Spermidine and spermine--polyamine components of turnip yellow mosaic virus. Virology. 1970 Apr;40(4):930–938. doi: 10.1016/0042-6822(70)90139-x. [DOI] [PubMed] [Google Scholar]
  3. Gamborg O. L., Miller R. A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968 Apr;50(1):151–158. doi: 10.1016/0014-4827(68)90403-5. [DOI] [PubMed] [Google Scholar]
  4. Igarashi K., Yabuki M., Yoshioka Y., Eguchi K., Hirose S. Mechanism of stimulation of polyphenylalanine synthesis by spermidine. Biochem Biophys Res Commun. 1977 Mar 7;75(1):163–171. doi: 10.1016/0006-291x(77)91304-3. [DOI] [PubMed] [Google Scholar]
  5. Jacob S. T., Rose K. M. Stimulation of RNA polymerases I, II and III from rat liver by spermine, and specific inhibition of RNA polymerase I by higher spermine concentrations. Biochim Biophys Acta. 1976 Feb 18;425(1):125–128. doi: 10.1016/0005-2787(76)90222-7. [DOI] [PubMed] [Google Scholar]
  6. Konecki D., Kramer G., Pinphanichakarn P., Hardesty B. Polyamines are necessary for maximum in vitro synthesis of globin peptides and play a role in chain initiation. Arch Biochem Biophys. 1975 Jul;169(1):192–198. doi: 10.1016/0003-9861(75)90332-x. [DOI] [PubMed] [Google Scholar]
  7. Kusunoki S., Yasumasu I. Cyclic change in polyamine concentrations in sea urchin eggs related with cleavage cycle. Biochem Biophys Res Commun. 1976 Feb 9;68(3):881–885. doi: 10.1016/0006-291x(76)91227-4. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Moruzzi G., Barbiroli B., Moruzzi M. S., Tadolini B. The effect of spermine on transcription of mammalian chromatin by mammalian deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1975 Mar;146(3):697–703. doi: 10.1042/bj1460697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Raina A., Jänne J., Siimes M. Stimulation of polyamine synthesis in relation to nucleic acids in regenerating rat liver. Biochim Biophys Acta. 1966 Jul 20;123(1):197–201. doi: 10.1016/0005-2787(66)90173-0. [DOI] [PubMed] [Google Scholar]
  11. Russel D. H., McVicker T. A. Polyamines in the developing rat and in supportive tissues. Biochim Biophys Acta. 1972 Jan 31;259(2):247–258. doi: 10.1016/0005-2787(72)90065-2. [DOI] [PubMed] [Google Scholar]
  12. Russell D. H., Medina V. J., Snyder S. H. The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain. J Biol Chem. 1970 Dec 25;245(24):6732–6738. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES