Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Oct;62(4):506–509. doi: 10.1104/pp.62.4.506

Subunit Structure and Composition of Oat Seed Globulin 1

David M Peterson 1
PMCID: PMC1092160  PMID: 16660548

Abstract

Oat (Avena sativa L.) seed globulin was extracted from ground caryopses with 1 m NaCl, 0.05 m Tris(hydroxymethyl)aminoethane (pH 8.5) at room temperature. The globulin had a sedimentation constant of 12.1, and a molecular weight of 322,000, as determined by analytical ultracentrifugation. The globulin could be separated into two major subunits by sodiumdodecyl sulfate polyacrylamide gel electrophoresis. Molecular weights of the subunits were 21,700 (α) and 31,700 (β), and they were present in equimolar amounts. A subunit model of 6α and 6β per molecule of globulin is proposed. Amino acid analysis indicated that the α subunit contained more basic amino acids and aspartic acid/asparagine but less glutamic acid/glutamine and glycine than the β subunit.

Full text

PDF
506

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
  2. Danielsson C. E. Seed globulins of the Gramineae and Leguminosae. Biochem J. 1949;44(4):387–400. doi: 10.1042/bj0440387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Draper S. R. Amino acid profiles of chemical and anatomical fractions of oat grains. J Sci Food Agric. 1973 Oct;24(10):1241–1250. doi: 10.1002/jsfa.2740241013. [DOI] [PubMed] [Google Scholar]
  4. Hearing V. J., Klingler W. G., Ekel T. M., Montague P. M. Molecular weight estimation of Triton X-100 solubilized proteins by polyacrylamide gel electrophoresis. Anal Biochem. 1976 May 7;72:113–122. doi: 10.1016/0003-2697(76)90512-1. [DOI] [PubMed] [Google Scholar]
  5. Johnson A. R. Improved method of hexosamine determination. Anal Biochem. 1971 Dec;44(2):628–635. doi: 10.1016/0003-2697(71)90252-1. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Luthe D. S., Peterson D. M. Cell-free Synthesis of Globulin by Developing Oat (Avena sativa L.) Seeds. Plant Physiol. 1977 May;59(5):836–841. doi: 10.1104/pp.59.5.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PUSZTAI A. HEXOSAMINES IN THE SEEDS OF HIGHER PLANTS (SPERMATOPHYTES). Nature. 1964 Mar 28;201:1328–1329. doi: 10.1038/2011328b0. [DOI] [PubMed] [Google Scholar]
  9. WALDSCHMIDT-LEITZ E., ZWISLER O. UBER DIE PROTEINE DES HAFERS (XI. UBER SAMENPROTEINE) Hoppe Seylers Z Physiol Chem. 1963;332:216–224. doi: 10.1515/bchm2.1963.332.1.216. [DOI] [PubMed] [Google Scholar]
  10. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  11. Wright D. J., Boulter D. Purification and subunit structure of legumin of Vicia faba L. (broad bean). Biochem J. 1974 Aug;141(2):413–418. doi: 10.1042/bj1410413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES