Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Oct;62(4):550–553. doi: 10.1104/pp.62.4.550

Partitioning of Sugar between Growth and Nitrate Reduction in Cotton Roots

John W Radin 1, Linda L Parker 1, Charles R Sell 1,1
PMCID: PMC1092168  PMID: 16660556

Abstract

The level of endogenous sugars was inversely related to nitrate availability in young cotton (Gossypium hirsutum L.) plants, with high nitrate causing a greater decline in sugar content of roots than of shoots. High nitrate (low sugar) plants also displayed relatively more shoot growth and less root growth than low nitrate (high sugar) plants. These data are consistent with the theory that roots are poor competitors for sugar, and that sugar supply is a major factor limiting root growth in vivo.

The effects of endogenous sugar level on root growth and on nitrate reductase activity in the root were different. When root sugar level was experimentally controlled by varying nitrate concentration in the nutrient solution, root growth was less sensitive than nitrate reductase activity to sugar deficiency. Also, in sterile root tips cultured on media containing a wide range of sucrose concentrations, growth rate was considerably less sensitive to endogenous sugar deficiency than was nitrate assimilation rate. Similarly, in plants which were detopped or girdled, nitrate reductase activity in the roots declined more rapidly than did root sugars, especially glucose and fructose. These results suggest that when sugar is deficient, cotton roots preferentially use it for growth at the expense of nitrate reduction.

Full text

PDF
550

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslam M., Oaks A. Effect of glucose on the induction of nitrate reductase in corn roots. Plant Physiol. 1975 Nov;56(5):634–639. doi: 10.1104/pp.56.5.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aslam M., Oaks A., Huffaker R. C. Effect of light and glucose on the induction of nitrate reductase and on the distribution of nitrate in etiolated barley leaves. Plant Physiol. 1976 Oct;58(4):588–591. doi: 10.1104/pp.58.4.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Radin J. W. Amino Acid interactions in the regulation of nitrate reductase induction in cotton root tips. Plant Physiol. 1977 Oct;60(4):467–469. doi: 10.1104/pp.60.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Radin J. W. Differential regulation of nitrate reductase induction in roots and shoots of cotton plants. Plant Physiol. 1975 Feb;55(2):178–182. doi: 10.1104/pp.55.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Radin J. W. Distribution and development of nitrate reductase activity in germinating cotton seedlings. Plant Physiol. 1974 Mar;53(3):458–463. doi: 10.1104/pp.53.3.458. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES