Abstract
The oscillations in phenylalanine ammonia-lyase activity from Spirodela polyrhiza and phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities from Lemna perpusilla displayed a circadian rhythm under continuous light. Rhythmicity in enzymic activity could not be detected in continuous darkness since under this condition phenylalanine ammonia-lyase activity remains at a fairly constantly low level. Results from our studies of the oscillatory pattern of the respective activities of phenylalanine and tyrosine ammonia-lyase support their “inseparability.”
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Codd G. A. The photoinhibition of malate dehydrogenase. FEBS Lett. 1972 Feb 1;20(2):211–214. doi: 10.1016/0014-5793(72)80797-x. [DOI] [PubMed] [Google Scholar]
- Hahlbrock K. Regulation of phenylalanine ammonia-lyase activity in cell-suspension cultures of Petroselinum hortense. Apparent rates of enzyme synthesis and degradation. Eur J Biochem. 1976 Mar 16;63(1):137–145. doi: 10.1111/j.1432-1033.1976.tb10216.x. [DOI] [PubMed] [Google Scholar]
- Hess B., Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem. 1971;40:237–258. doi: 10.1146/annurev.bi.40.070171.001321. [DOI] [PubMed] [Google Scholar]
- Hillman W. S. Carbon dioxide output as an index of circadian timing in Lemna photoperiodism. Plant Physiol. 1970 Mar;45(3):273–279. doi: 10.1104/pp.45.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillman W. S. Effects of inorganic nitrogen on the response of Lemna carbon dioxide output to light quality and timing. Photochem Photobiol. 1975 Jan;21(1):30–47. doi: 10.1111/j.1751-1097.1975.tb06627.x. [DOI] [PubMed] [Google Scholar]
- Khan A. A., Sanwal G. G. Diurnal variation in the activities of isocitrate and glucose-6-phosphate dehydrogenase in cactus phylloclades. Experientia. 1971 Feb 15;27(2):136–136. doi: 10.1007/BF02145852. [DOI] [PubMed] [Google Scholar]
- Koukkari W. L. Quantifying Rhythmic Movements of Albizzia julibrissin Pinnules. Plant Physiol. 1973 Jun;51(6):1084–1088. doi: 10.1104/pp.51.6.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pittendrigh C. S. ON TEMPERATURE INDEPENDENCE IN THE CLOCK SYSTEM CONTROLLING EMERGENCE TIME IN DROSOPHILA. Proc Natl Acad Sci U S A. 1954 Oct;40(10):1018–1029. doi: 10.1073/pnas.40.10.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podstolski A. J., Brown G. N. l-Phenylalanine Ammonia-lyase Activity in Robinia pseudoacacia Seedlings: I. Cyclic Phenomenon Activity during Continuous Light. Plant Physiol. 1974 Jul;54(1):41–43. doi: 10.1104/pp.54.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potty V. H. Determination of proteins in the presence of phenols and pectins. Anal Biochem. 1969 Jun;29(3):535–539. doi: 10.1016/0003-2697(69)90339-x. [DOI] [PubMed] [Google Scholar]
- Pye K., Chance B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. Proc Natl Acad Sci U S A. 1966 Apr;55(4):888–894. doi: 10.1073/pnas.55.4.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sel'kov E. E. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur J Biochem. 1968 Mar;4(1):79–86. doi: 10.1111/j.1432-1033.1968.tb00175.x. [DOI] [PubMed] [Google Scholar]
- Zucker M. Induction of phenylalanine ammonia-lyase in Xanthium leaf disks. Photosynthetic requirement and effect of daylength. Plant Physiol. 1969 Jun;44(6):912–922. doi: 10.1104/pp.44.6.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zucker M. Induction of phenylalanine ammonia-lyase in xanthium leaf discs: increased inactivation in darkness. Plant Physiol. 1971 Mar;47(3):442–444. doi: 10.1104/pp.47.3.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
