Abstract
Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- Chen M., Loewus F. A. myo-Inositol Metabolism in Lilium longiflorum Pollen: Uptake and Incorporation of myo-Inositol-2-H. Plant Physiol. 1977 Apr;59(4):653–657. doi: 10.1104/pp.59.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibowitz M. D., Dickinson D. B., Loewus F. A., Loewus M. Partial purification and study of pollen glucuronokinase. Arch Biochem Biophys. 1977 Mar;179(2):559–564. doi: 10.1016/0003-9861(77)90144-8. [DOI] [PubMed] [Google Scholar]
- Macfarlane N., Ainsworth S. A kinetic study of Baker's-yeast pyruvate kinase activated by fructose 1,6-diphosphate. Biochem J. 1972 Oct;129(5):1035–1047. doi: 10.1042/bj1291035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manthey A. E., Dickinson D. B. Metabolism of myo-Inositol by Germinating Lilium longiflorum Pollen. Plant Physiol. 1978 Jun;61(6):904–908. doi: 10.1104/pp.61.6.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEUFELD E. F., FEINGOLD D. S., HASSID W. Z. Enzymic phosphorylation of D-glucuronic acid by extracts from seedlings of Phaseolus aureus. Arch Biochem Biophys. 1959 Jul;83(1):96–100. doi: 10.1016/0003-9861(59)90014-1. [DOI] [PubMed] [Google Scholar]
- Ryan L. D., Vestling C. S. Rapid purification of lactate dehydrogenase from rat liver and hepatoma: a new approach. Arch Biochem Biophys. 1974 Jan;160(1):279–284. doi: 10.1016/s0003-9861(74)80035-4. [DOI] [PubMed] [Google Scholar]
- Thompson S. T., Cass K. H., Stellwagen E. Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins. Proc Natl Acad Sci U S A. 1975 Feb;72(2):669–672. doi: 10.1073/pnas.72.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J. E. Applications of blue dextran and Cibacron Blue F3GA in purification and structural studies of nucleotide-requiring enzymes. Biochem Biophys Res Commun. 1976 Oct 4;72(3):816–823. doi: 10.1016/s0006-291x(76)80206-9. [DOI] [PubMed] [Google Scholar]
