Abstract
In the course of plastid development there are changes in the permeability of the envelope membranes. An investigation of the kinetics of transport with largely uncontaminated and intact etioplast/etiochloroplast preparations from greening Avena sativa laminae demonstrates: (a) that etioplasts already possess specific translocators for the transporation of orthophosphate, dihydroxyacetone phosphate, 3-phosphoglycerate (“phosphate translocator”), and dicarboxylic acids (“dicarboxylate translocator”); (b) that changes in the rates of uptake during development are mainly due to changes in velocity for specific transport and not due to changes in the affinity for transport (Km) or nonspecific permeation. The very low competitive inhibition of transport of orthophosphate by dihydroxyacetone phosphate and 3-phosphoglycerate, observed for developmental stages corresponding to up to 3 hours of illumination of etiolated tissue, is discussed with respect to the possibility of an early phosphate transport mechanism that is different from the phosphate translocator of more developed plastids.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Daemen F. J., Van Breugel P. J., Jansen P. A., Bonting S. L. Biochemical aspects of the visual process. XXXIV. Relation between sulfhydryl groups and properties of rhodopsin studied by means of methylmercuric iodide. Biochim Biophys Acta. 1976 Dec 22;453(2):374–382. doi: 10.1016/0005-2795(76)90132-x. [DOI] [PubMed] [Google Scholar]
- Drumm H. E., Margulies M. M. In vitro protein synthesis by plastids of Phaseolus vulgaris. IV. Amino acid incorporation by etioplasts and effect of illumination of leaves on incorporation by plastids. Plant Physiol. 1970 Apr;45(4):435–442. doi: 10.1104/pp.45.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
- Heldt H. W., Rapley L. Unspecific permeation and specific uptake of substances in spinach chloroplasts. FEBS Lett. 1970 Apr 2;7(2):139–142. doi: 10.1016/0014-5793(70)80140-5. [DOI] [PubMed] [Google Scholar]
- Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
- Klingenberg M. Mitochondria metabolite transport. FEBS Lett. 1970 Feb 16;6(3):145–154. doi: 10.1016/0014-5793(70)80044-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lord J. M., Kagawa T., Moore T. S., Beevers H. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol. 1973 Jun;57(3):659–667. doi: 10.1083/jcb.57.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorimer G. H., Badger M. R., Andrews T. J. D-Ribulose-1,5-bisphosphate carboxylase-oxygenase. Improved methods for the activation and assay of catalytic activities. Anal Biochem. 1977 Mar;78(1):66–75. doi: 10.1016/0003-2697(77)90009-4. [DOI] [PubMed] [Google Scholar]
- Tolbert N. E., Oeser A., Kisaki T., Hageman R. H., Yamazaki R. K. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J Biol Chem. 1968 Oct 10;243(19):5179–5184. [PubMed] [Google Scholar]
