Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Nov;62(5):761–765. doi: 10.1104/pp.62.5.761

Regulation of Ribosomal RNA Accumulation by Auxin in Artichoke Tissue 1

Dara L Melanson 1,2,2, John Ingle 1,2
PMCID: PMC1092216  PMID: 16660601

Abstract

Artichoke (Helianthus tuberosus L.) tuber tissue cultured in the presence of the auxin 2,4-dichlorophenoxyacetic acid accumulates ribosomal RNA at a rate of 0.135 micrograms per hour per explant whereas there is little accumulation in nontreated tissue. The addition of auxin enhanced the transcription of the 2.5 × 106 precursor 3.5-fold and increased the rate of processing 1.8-fold. The major effect of auxin, however, was a vast increase in the rate of processing of the 1.39 × 106 precursor to the 1.3 × 106 mature ribosomal RNA. The incorporation of label into the 0.7 × 106 mature ribosomal RNA of treated tissue was in 10-fold excess over the control after a 30-minute pulse and remained so throughout the remainder of the labeling period. This level, however, was not reached for the complementary 1.3 mature RNA until 3 hours of continuous labeling, decreasing from a initial value of 40-fold excess. A complication in the processing of ribosomal RNA is the apparent increase in the stability of the 0.7 × 106 mature RNA with auxin treatment.

Full text

PDF
761

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman K. S., Ingle J. The stability, polyadenylic acid content and ribonucleoprotein form of nulcear ribonucleic acid in artichoke. Biochem J. 1976 Dec 1;159(3):585–600. doi: 10.1042/bj1590585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper H. L., Gibson E. M. Control of synthesis and wastage of ribosomal ribonucleic acid in lymphocytes. II. The role of protein synthesis. J Biol Chem. 1971 Aug 25;246(16):5059–5066. [PubMed] [Google Scholar]
  3. Cox B. J., Turnock G. Synthesis and processing of ribosomal RNA in cultured plant cells. Eur J Biochem. 1973 Aug 17;37(2):367–376. doi: 10.1111/j.1432-1033.1973.tb02996.x. [DOI] [PubMed] [Google Scholar]
  4. Das N. K., Micou-Eastwood J., Ramamurthy G., Alfert M. Sites of synthesis and processing of ribosomal RNA presurosrs within the nucleolus of Urechis caupo eggs. Proc Natl Acad Sci U S A. 1970 Oct;67(2):968–975. doi: 10.1073/pnas.67.2.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fantoni A., Bordin S., Lunadei M. Control of ribosomal RNA maturation in differentiating yolk sac erythroid cells. Cell Differ. 1972 Oct;1(4):219–228. doi: 10.1016/0045-6039(72)90040-1. [DOI] [PubMed] [Google Scholar]
  6. Gore J. R., Ingle J. Ribonucleic acid polymerase activities in Jerusalem artichoke tissue. Biochem J. 1974 Oct;143(1):107–113. doi: 10.1042/bj1430107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenberg J. R. High stability of messenger RNA in growing cultured cells. Nature. 1972 Nov 10;240(5376):102–104. doi: 10.1038/240102a0. [DOI] [PubMed] [Google Scholar]
  8. Grierson D., Loening U. Ribosomal RNA precursors and the synthesis of chloroplast and cytoplasmic ribosomal ribonucleic acid in leaves of Phaseolus aureus. Eur J Biochem. 1974 May 15;44(2):501–507. doi: 10.1111/j.1432-1033.1974.tb03508.x. [DOI] [PubMed] [Google Scholar]
  9. Guilfoyle T. J., Lin C. Y., Chen Y. M., Nagao R. T., Key J. L. Enhancement of soybean RNA polymerase I by auxin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):69–72. doi: 10.1073/pnas.72.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ingle J., Sinclair J. Ribosomal RNA genes and plant development. Nature. 1972 Jan 7;235(5332):30–32. doi: 10.1038/235030a0. [DOI] [PubMed] [Google Scholar]
  11. Jackson M., Ingle J. The interpretation of studies on rapidly labeled ribonucleic Acid in higher plants. Plant Physiol. 1973 Feb;51(2):412–414. doi: 10.1104/pp.51.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leaver C. J., Key J. L. Ribosomal RNA synthesis in plants. J Mol Biol. 1970 May 14;49(3):671–680. doi: 10.1016/0022-2836(70)90290-1. [DOI] [PubMed] [Google Scholar]
  13. Leaver C. J., Lovett J. S. An analysis of protein and RNA synthesis during encystment and outgrowth (germination) of Blastocladiella zoospores. Cell Differ. 1974 Sep;3(3):165–192. doi: 10.1016/0045-6039(74)90028-1. [DOI] [PubMed] [Google Scholar]
  14. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Brien T. J., Jarvis B. C., Cherry J. H., Hanson J. B. Enhancement by 2,4-dichlorophenoxyacetic acid of chromatin RNA polymerase in soybean hypocotyl tissue. Biochim Biophys Acta. 1968 Nov 20;169(1):35–43. doi: 10.1016/0005-2787(68)90006-3. [DOI] [PubMed] [Google Scholar]
  16. Rogers M. E., Loening U. E., Fraser R. S. Ribosomal RNA precursors in plants. J Mol Biol. 1970 May 14;49(3):681–692. doi: 10.1016/0022-2836(70)90291-3. [DOI] [PubMed] [Google Scholar]
  17. Staynov D. Z., Pinder J. C., Gratzer W. B. Molecular weight determination of nucleic acids by gel electrophoresis in non-aqueous solution. Nat New Biol. 1972 Jan 26;235(56):108–110. doi: 10.1038/newbio235108a0. [DOI] [PubMed] [Google Scholar]
  18. Trewavas A. The Turnover of Nucleic Acids in Lemna minor. Plant Physiol. 1970 Jun;45(6):742–751. doi: 10.1104/pp.45.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES