Abstract
Artichoke (Helianthus tuberosus L.) tuber tissue cultured in the presence of the auxin 2,4-dichlorophenoxyacetic acid accumulates ribosomal RNA at a rate of 0.135 micrograms per hour per explant whereas there is little accumulation in nontreated tissue. The addition of auxin enhanced the transcription of the 2.5 × 106 precursor 3.5-fold and increased the rate of processing 1.8-fold. The major effect of auxin, however, was a vast increase in the rate of processing of the 1.39 × 106 precursor to the 1.3 × 106 mature ribosomal RNA. The incorporation of label into the 0.7 × 106 mature ribosomal RNA of treated tissue was in 10-fold excess over the control after a 30-minute pulse and remained so throughout the remainder of the labeling period. This level, however, was not reached for the complementary 1.3 mature RNA until 3 hours of continuous labeling, decreasing from a initial value of 40-fold excess. A complication in the processing of ribosomal RNA is the apparent increase in the stability of the 0.7 × 106 mature RNA with auxin treatment.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chapman K. S., Ingle J. The stability, polyadenylic acid content and ribonucleoprotein form of nulcear ribonucleic acid in artichoke. Biochem J. 1976 Dec 1;159(3):585–600. doi: 10.1042/bj1590585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper H. L., Gibson E. M. Control of synthesis and wastage of ribosomal ribonucleic acid in lymphocytes. II. The role of protein synthesis. J Biol Chem. 1971 Aug 25;246(16):5059–5066. [PubMed] [Google Scholar]
- Cox B. J., Turnock G. Synthesis and processing of ribosomal RNA in cultured plant cells. Eur J Biochem. 1973 Aug 17;37(2):367–376. doi: 10.1111/j.1432-1033.1973.tb02996.x. [DOI] [PubMed] [Google Scholar]
- Das N. K., Micou-Eastwood J., Ramamurthy G., Alfert M. Sites of synthesis and processing of ribosomal RNA presurosrs within the nucleolus of Urechis caupo eggs. Proc Natl Acad Sci U S A. 1970 Oct;67(2):968–975. doi: 10.1073/pnas.67.2.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fantoni A., Bordin S., Lunadei M. Control of ribosomal RNA maturation in differentiating yolk sac erythroid cells. Cell Differ. 1972 Oct;1(4):219–228. doi: 10.1016/0045-6039(72)90040-1. [DOI] [PubMed] [Google Scholar]
- Gore J. R., Ingle J. Ribonucleic acid polymerase activities in Jerusalem artichoke tissue. Biochem J. 1974 Oct;143(1):107–113. doi: 10.1042/bj1430107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg J. R. High stability of messenger RNA in growing cultured cells. Nature. 1972 Nov 10;240(5376):102–104. doi: 10.1038/240102a0. [DOI] [PubMed] [Google Scholar]
- Grierson D., Loening U. Ribosomal RNA precursors and the synthesis of chloroplast and cytoplasmic ribosomal ribonucleic acid in leaves of Phaseolus aureus. Eur J Biochem. 1974 May 15;44(2):501–507. doi: 10.1111/j.1432-1033.1974.tb03508.x. [DOI] [PubMed] [Google Scholar]
- Guilfoyle T. J., Lin C. Y., Chen Y. M., Nagao R. T., Key J. L. Enhancement of soybean RNA polymerase I by auxin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):69–72. doi: 10.1073/pnas.72.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingle J., Sinclair J. Ribosomal RNA genes and plant development. Nature. 1972 Jan 7;235(5332):30–32. doi: 10.1038/235030a0. [DOI] [PubMed] [Google Scholar]
- Jackson M., Ingle J. The interpretation of studies on rapidly labeled ribonucleic Acid in higher plants. Plant Physiol. 1973 Feb;51(2):412–414. doi: 10.1104/pp.51.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leaver C. J., Key J. L. Ribosomal RNA synthesis in plants. J Mol Biol. 1970 May 14;49(3):671–680. doi: 10.1016/0022-2836(70)90290-1. [DOI] [PubMed] [Google Scholar]
- Leaver C. J., Lovett J. S. An analysis of protein and RNA synthesis during encystment and outgrowth (germination) of Blastocladiella zoospores. Cell Differ. 1974 Sep;3(3):165–192. doi: 10.1016/0045-6039(74)90028-1. [DOI] [PubMed] [Google Scholar]
- Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien T. J., Jarvis B. C., Cherry J. H., Hanson J. B. Enhancement by 2,4-dichlorophenoxyacetic acid of chromatin RNA polymerase in soybean hypocotyl tissue. Biochim Biophys Acta. 1968 Nov 20;169(1):35–43. doi: 10.1016/0005-2787(68)90006-3. [DOI] [PubMed] [Google Scholar]
- Rogers M. E., Loening U. E., Fraser R. S. Ribosomal RNA precursors in plants. J Mol Biol. 1970 May 14;49(3):681–692. doi: 10.1016/0022-2836(70)90291-3. [DOI] [PubMed] [Google Scholar]
- Staynov D. Z., Pinder J. C., Gratzer W. B. Molecular weight determination of nucleic acids by gel electrophoresis in non-aqueous solution. Nat New Biol. 1972 Jan 26;235(56):108–110. doi: 10.1038/newbio235108a0. [DOI] [PubMed] [Google Scholar]
- Trewavas A. The Turnover of Nucleic Acids in Lemna minor. Plant Physiol. 1970 Jun;45(6):742–751. doi: 10.1104/pp.45.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
