Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Nov;62(5):766–772. doi: 10.1104/pp.62.5.766

Membrane-associated Glycosyl Transferases in Cotyledons of Pisum sativum

Differential Effects of Magnesium and Manganese Ions 1

Jerry Nagahashi 1, Rose M Mense 1, Leonard Beevers 1
PMCID: PMC1092217  PMID: 16660602

Abstract

In crude particulate fractions isolated from pea (Pisum sativum) cotyledons, the transfer of radioactivity from GDP-[14C]mannose to glycolipid appears to be preferentially stimulated by Mn2+ while the transfer to lipid-free residue is enhanced by Mg2+. In contrast, the transfer of radioactivity from UDP-N-acetyl-[14C]glucosamine to glycolipid shows preferential stimulation by Mg2+ while the transfer to lipid-free residue prefers Mn2+. These results are accounted for by the differential stimulation by Mg2+ and Mn2+ of glycosyl transferases associated with subcellular membranes which were separated by isopycnic sucrose density centrifugation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basha S. M., Beevers L. Glycoprotein Metabolism in the Cotyledons of Pisum sativum during Development and Germination. Plant Physiol. 1976 Jan;57(1):93–97. doi: 10.1104/pp.57.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beevers L., Mense R. M. Glycoprotein Biosynthesis in Cotyledons of Pisum sativum L: Involvement of Lipid-linked Intermediates. Plant Physiol. 1977 Nov;60(5):703–708. doi: 10.1104/pp.60.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bosmann H. B., Martin S. S. Mitochondrial autonomy: incorporation of monosaccharides into glycoprotein by isolated mitochondria. Science. 1969 Apr 11;164(3876):190–192. doi: 10.1126/science.164.3876.190. [DOI] [PubMed] [Google Scholar]
  4. Chambers J., Elbein A. D. Biosynthesis and characterization of lipid-linked sugars and glycoproteins in aorta. J Biol Chem. 1975 Sep 10;250(17):6904–6915. [PubMed] [Google Scholar]
  5. Chambers J., Forsee W. T., Elbein A. D. Enzymatic transfer of mannose from mannosyl-phosphoryl-polyprenol to lipid-linked oligosaccharides by pig aorta. J Biol Chem. 1977 Apr 25;252(8):2498–2506. [PubMed] [Google Scholar]
  6. Czichi U., Lennarz W. J. Localization of the enzyme system for glycosylation of proteins via the lipid-linked pathway in rough endoplasmic reticulum. J Biol Chem. 1977 Nov 25;252(22):7901–7904. [PubMed] [Google Scholar]
  7. Elbein A. D. Biosynthesis of a cell wall glucomannan in mung bean seedlings. J Biol Chem. 1969 Mar 25;244(6):1608–1616. [PubMed] [Google Scholar]
  8. Forsee W. T., Elbein A. D. Glycoprotein biosynthesis in plants. Demonstration of lipid-linked oligosaccharides of mannose and N-acetylglucosamine. J Biol Chem. 1975 Dec 25;250(24):9283–9293. [PubMed] [Google Scholar]
  9. Forsee W. T., Griffin J. A., Schutzbach J. S. Mannosyltransfer from GDP-mannose to oligosaccharide-lipids. Biochem Biophys Res Commun. 1977 Apr 11;75(3):799–805. doi: 10.1016/0006-291x(77)91543-1. [DOI] [PubMed] [Google Scholar]
  10. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  11. Lehle L., Bauer F., Tanner W. The formation of glycosidic bonds in yeast glycoproteins. Intracellular localisation of the reactions. Arch Microbiol. 1977 Jul 26;114(1):77–81. doi: 10.1007/BF00429634. [DOI] [PubMed] [Google Scholar]
  12. Lehle L., Fartaczek F., Tanner W., Kauss H. Formation of polyprenol-linked mono- and oligosaccharides in Phaseolus aureus. Arch Biochem Biophys. 1976 Aug;175(2):419–426. doi: 10.1016/0003-9861(76)90529-4. [DOI] [PubMed] [Google Scholar]
  13. Lehle L., Tanner W. Membrane-bound mannosyl transferase in yeast glycoprotein biosynthesis. Biochim Biophys Acta. 1974 May 20;350(1):225–235. doi: 10.1016/0005-2744(74)90220-4. [DOI] [PubMed] [Google Scholar]
  14. Leonard R. T., Vanderwoude W. J. Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol. 1976 Jan;57(1):105–114. doi: 10.1104/pp.57.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lucas J. J., Waechter J., Lennarz W. J. The participation of lipid-linked oligosaccharide in synthesis of membrane glycoproteins. J Biol Chem. 1975 Mar 25;250(6):1992–2002. [PubMed] [Google Scholar]
  16. Molnar J. A proposed pathway of plasma glycoprotein synthesis. Mol Cell Biochem. 1975 Jan 31;6(1):3–14. doi: 10.1007/BF01731862. [DOI] [PubMed] [Google Scholar]
  17. Nagahashi J., Beevers L. Subcellular Localization of Glycosyl Transferases Involved in Glycoprotein Biosynthesis in the Cotyledons of Pisum sativum L. Plant Physiol. 1978 Mar;61(3):451–459. doi: 10.1104/pp.61.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oliver G. J., Harrison J., Hemming F. W. The mannosylation of dolichol-diphosphate oligosaccharides in relation to the formation of oligosaccharides and glycoproteins in pig-liver endoplasmic reticulum. Eur J Biochem. 1975 Oct 1;58(1):223–229. doi: 10.1111/j.1432-1033.1975.tb02367.x. [DOI] [PubMed] [Google Scholar]
  19. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  20. Smith M. M., Axelos M., Péaud-Lenoël C. Biosynthesis of mannan and mannolipids from GDP-Man by membrane fractions of sycamore cell cultures. Biochimie. 1976;58(10):1195–1211. doi: 10.1016/s0300-9084(76)80119-8. [DOI] [PubMed] [Google Scholar]
  21. Waechter C. J., Lennarz W. J. The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem. 1976;45:95–112. doi: 10.1146/annurev.bi.45.070176.000523. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES