Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Dec;62(6):981–986. doi: 10.1104/pp.62.6.981

Photooxidative Damage in Photosynthetic Activities of Chromatium vinosum 1

Sumio Asami 1, Takashi Akazawa 1
PMCID: PMC1092267  PMID: 16660651

Abstract

The capacity of photosynthetic CO2 fixation in the anaerobic purple-sulfur bacterium, Chromatium vinosum is markedly impaired by strong illumination (9 × 104 lux) in the presence of 100% O2. In the absence of HCO3, decline in activity occurred gradually, with about 40% of the initial activity remaining after a 1-hour incubation. The addition of 50 millimolar HCO3 to the incubation medium resulted in a measurable delay (about 30 minutes) of the inactivation process. Ribulose-1,5-bisphosphate carboxylase activity and light-dependent O2 uptake (electron flow) or crude extracts prepared after pretreatment of the bacterial cells with O2 and light were not affected but the photophosphorylation capacity of either bacterial cells or chromatophores was drastically reduced. The inhibition of photophos-phorylation in the chromatophore preparations was significantly reduced by the addition of either an O2 scavenger, Tiron, or an 1O2 scavenger, α-tocopherol. These results suggest that the active O2 species, O2 or 1O2, might take part in the observed inactivation.

The pretreatment of the bacteria with O2 and light inhibited CO2 assimilation through the Calvin-Benson cycle, while relatively stimulating the formation of aspartate and glutamate. It also inhibited the conversion of glycolate to glycine, resulting in a sustained extracellular excretion of glycolate. The inactivation of photosynthetic CO2 fixation by intact cells was enhanced by low temperature, KCN, or methylviologen addition during the pretreatment with O2 and light. The mechanism(s) of O2-dependent photoinactivation of photosynthetic activities in Chromatium are discussed in relation to the possible role of photorespiration as a means of producing CO2 in the photosynthetic system.

Full text

PDF
981

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M. Light inactivation of photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 Oct 21;44:41–48. doi: 10.1016/0006-3002(60)91520-1. [DOI] [PubMed] [Google Scholar]
  2. Abeliovich A., Kellenberg D., Shilo M. Effect of photooxidative conditions on levels of superoxide dismutase in Anacystis nidulans. Photochem Photobiol. 1974 May;19(5):379–382. doi: 10.1111/j.1751-1097.1974.tb06526.x. [DOI] [PubMed] [Google Scholar]
  3. Abeliovich A., Shilo M. Photooxidative death in blue-green algae. J Bacteriol. 1972 Sep;111(3):682–689. doi: 10.1128/jb.111.3.682-689.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akazawa T., Kondo H., Shimazue T., Nishimura M., Sugiyama T. Further studies on ribulose 1,5-diphosphate carboxylase from Chromatium strain D. Biochemistry. 1972 Mar 28;11(7):1298–1303. doi: 10.1021/bi00757a028. [DOI] [PubMed] [Google Scholar]
  5. Allen J. F., Hall D. O. The relationship of oxygen uptake to electron transport in photosystem I of isolated chloroplasts: the role of superoxide and ascorbate. Biochem Biophys Res Commun. 1974 Jun 4;58(3):579–585. doi: 10.1016/s0006-291x(74)80459-6. [DOI] [PubMed] [Google Scholar]
  6. Asada K., Kiso K., Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem. 1974 Apr 10;249(7):2175–2181. [PubMed] [Google Scholar]
  7. Asami S., Akazawa T. Enzymic formation of glycolate in Chromatium. Role of superoxide radical in a transketolase-type mechanism. Biochemistry. 1977 May 17;16(10):2202–2207. doi: 10.1021/bi00629a025. [DOI] [PubMed] [Google Scholar]
  8. Egneus H., Heber U., Matthiesen U., Kirk M. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta. 1975 Dec 11;408(3):252–268. doi: 10.1016/0005-2728(75)90128-0. [DOI] [PubMed] [Google Scholar]
  9. FORTI G., JAGENDORF A. T. Inactivation by light of the phosphorylative activity of chloroplasts. Biochim Biophys Acta. 1960 Oct 21;44:34–40. doi: 10.1016/0006-3002(60)91519-5. [DOI] [PubMed] [Google Scholar]
  10. FULLER R. C., ANDERSON I. C. Suppression of carotenoid synthesis and its effect on the activity of photosynthetic bacterial chromatophores. Nature. 1958 Jan 24;181(4604):252–254. doi: 10.1038/181252a0. [DOI] [PubMed] [Google Scholar]
  11. Foote C. S., Ching T. Y., Geller G. G. Chemistry of singlet oxygen. XVIII. Rates of reaction and quenching of alpha-tocopherol and singlet oxygen. Photochem Photobiol. 1974 Dec;20(6):511–513. doi: 10.1111/j.1751-1097.1974.tb06611.x. [DOI] [PubMed] [Google Scholar]
  12. GIOVANELLI J., SAN PIETRO A. Photosynthetic pyridine nucleotide reductase. II. Photoinactivation in the presence of chloroplasts. Arch Biochem Biophys. 1959 Oct;84:471–485. doi: 10.1016/0003-9861(59)90609-5. [DOI] [PubMed] [Google Scholar]
  13. Gibbs M. Photorespiration, Warburg effect and glycolate. Ann N Y Acad Sci. 1969 Dec 19;168(2):356–368. doi: 10.1111/j.1749-6632.1969.tb43123.x. [DOI] [PubMed] [Google Scholar]
  14. Gibson J., Hart B. A. Localization and characterization of Calvin cycle enzymes in Chromatium strain D. Biochemistry. 1969 Jul;8(7):2737–2741. doi: 10.1021/bi00835a007. [DOI] [PubMed] [Google Scholar]
  15. Greenstock C. L., Miller R. W. The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts. Biochim Biophys Acta. 1975 Jul 8;396(1):11–16. doi: 10.1016/0005-2728(75)90184-x. [DOI] [PubMed] [Google Scholar]
  16. Halliwell B. The chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog Biophys Mol Biol. 1978;33(1):1–54. doi: 10.1016/0079-6107(79)90024-5. [DOI] [PubMed] [Google Scholar]
  17. Jones L. W., Kok B. Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol. 1966 Jun;41(6):1037–1043. doi: 10.1104/pp.41.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kanematsu S., Asada K. Superoxide dismutase from an anaerobic photosynthetic bacterium, Chromatium vinosum. Arch Biochem Biophys. 1978 Jan 30;185(2):473–482. doi: 10.1016/0003-9861(78)90191-1. [DOI] [PubMed] [Google Scholar]
  19. Lorimer G. H., Osmond C. B., Akazawa T., Asami S. On the mechanism of glycolate synthesis by Chromatium and Chlorella. Arch Biochem Biophys. 1978 Jan 15;185(1):49–56. doi: 10.1016/0003-9861(78)90142-x. [DOI] [PubMed] [Google Scholar]
  20. Murai T., Akazawa T. Biocarbonate Effect on the Photophosphorylation Catalyzed by Chromatophores Isolated from Chromatium Strain D: XII. Structure and Function of Chloroplast Proteins. Plant Physiol. 1972 Nov;50(5):568–571. doi: 10.1104/pp.50.5.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ort D. R., Izawa S. Studies on the Energy-coupling Sites of Photophosphorylation: V. Phosphorylation Efficiencies (P/e(2)) Associated with Aerobic Photooxidation of Artificial Electron Donors. Plant Physiol. 1974 Mar;53(3):370–376. doi: 10.1104/pp.53.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Slooten L., Sybesma C. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta. 1976 Dec 6;449(3):565–580. doi: 10.1016/0005-2728(76)90165-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES