Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jul 16:2024.02.24.581871. Originally published 2024 Feb 26. [Version 2] doi: 10.1101/2024.02.24.581871

ADELLE: A global testing method for Trans-eQTL mapping

Takintayo Akinbiyi, Mary Sara McPeek, Mark Abney
PMCID: PMC10925110  PMID: 38464248

Abstract

Understanding the genetic regulatory mechanisms of gene expression is a challenging and ongoing problem. Genetic variants that are associated with expression levels are readily identified when they are proximal to the gene (i.e., cis-eQTLs), but SNPs distant from the gene whose expression levels they are associated with (i.e., trans-eQTLs) have been much more difficult to discover, even though they account for a majority of the heritability in gene expression levels. A major impediment to the identification of more trans-eQTLs is the lack of statistical methods that are powerful enough to overcome the obstacles of small effect sizes and large multiple testing burden of trans-eQTL mapping. Here, we propose ADELLE, a powerful statistical testing framework that requires only summary statistics and is designed to be most sensitive to SNPs that are associated with multiple gene expression levels, a characteristic of many trans-eQTLs. In simulations, we show that for detecting SNPs that are associated with 0.1%–2% of 10,000 traits, among the 7 methods we consider ADELLE is clearly the most powerful overall, with either the highest power or power not significantly different from the highest for all settings in that range. We apply ADELLE to a mouse advanced intercross line data set and show its ability to find trans-eQTLs that were not significant under a standard analysis. This demonstrates that ADELLE is a powerful tool at uncovering trans regulators of genetic expression.

Full Text

The Full Text of this preprint is available as a PDF (957.4 KB). The Web version will be available soon.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES