Skip to main content
Revista de Saúde Pública logoLink to Revista de Saúde Pública
. 2024 Mar 4;58:08. doi: 10.11606/s1518-8787.2024058005504
View full-text in Portuguese

Effects of land cover and air pollution on the risk of preterm births

Tiana C L Moreira I, Jefferson L Polizel II, Weeberb J Réquia III, Paulo Hilario Nascimento Saldiva I, Demostenes F da Silva Filho II, Silvia Regina Dias Medici Saldiva IV, Thais Mauad I
PMCID: PMC10926984  PMID: 38477779

ABSTRACT

OBJECTIVE

To evaluate the association between gestational age and green areas, urban built areas, and the concentration of particulate matter 2.5 (PM2.5) in the city of São Paulo, analyzing the irregular distribution of these areas and pollution levels above the recommended level.

METHODS

The study population consisted of a cohort of live births from 2012, and data from the Live Birth Information System (Sinasc) of the city of São Paulo were used. Using satellite images and supervised classification, the distribution and quantity of green areas and built areas in the city of São Paulo was obtained, as well as the concentrations of PM2.5. Logistic regressions were used to obtain possible associations.

RESULTS

The results of the study show that a lower percentage of green areas is significantly associated with a higher chance of preterm births. A higher building density was positively associated with the odds ratio for preterm birth. We did not find any significant associations between air pollution (PM2.5) and preterm births.

CONCLUSIONS

The results of this study show that greener areas are less associated with preterm births when compared with less green areas.

Keywords: Parks, Recreational; Air Pollution; Infant, Premature; Built Environment

INTRODUCTION

The association of gestational outcomes with environmental exposures, namely urban green areas and air pollution, is an important field of study of environmental epidemiology.

Several studies show that living near green areas and frequenting them brings benefits regarding birth weight and/or prematurity 1 . Grazuleviciene et al. 4 carried out a study with 3,416 women in the first trimester of pregnancy in Lithuania, investigating the beneficial influence of a shorter distance between mothers’ homes and public parks on maternal systemic blood pressure. In another study, pregnant women who lived up to 1,250 m (a 10 to 15 minutes’ walk) from green areas in cities in Pennsylvania (USA) were found to have a higher frequency of full-term pregnancies than those who lived further than 1,250 m from green areas 5 .

Groups with lower purchasing power seem to benefit especially from exposure to green areas. In China, mothers with lower purchasing power exposed to these areas obtained the greatest benefits in terms of birth outcomes, especially those related to prematurity 6 . In Australia, Akaraci et al. 1 observed that a greater coverage of green areas was related to lower chances of prematurity in the more socially vulnerable population, those with lower purchasing power.

Other studies found no evidence that living near green or less polluted areas reduced the risk of preterm birth. Asta et al. 7 , for example, observed that women in Rome, even those who lived closer to green areas, had an increased probability of preterm birth with each 1°C increase in temperature, with no modifying effect from particulate matter 10 (PM10).

Several studies worldwide found that maternal exposure to particulate matter causes adverse effects on prematurity and birth weight 8 . Confirming these data, a study carried out in the city of São Paulo found that an increase of 10 μg/m3 in O3 and PM10 was associated with chances of prematurity and low birth weight 9 .

In 2012 and 2013, 348,337 live births were recorded in the city of São Paulo, with a prematurity rate of 11.9%, which ranged from 8.4% to 15.9% in the 96 districts of the city of São Paulo 10 , a figure that is very similar to global averages 11 . Leal et al. 12 observed that, in a population of 23,940 Brazilian women in 2011 and 2012, 11.5% of births were premature; and that adolescent mothers with low schooling and income were the majority in this rate.

Figure. Study population in the municipality of São Paulo.

Figure

Few studies have analyzed environmental variables and their influence on gestational outcomes in São Paulo. Most of the studies focusing on this association were carried out in countries with higher purchasing power than ours 8 , 13 , 14 or in cities where the characteristics of pollution and green area distribution differed from those of our megacities. In São Paulo, green areas are distributed quite unevenly and concentrated in wealthier, intra-urban locations. The green areas located in peripheral regions are remnants of the native ones, not located in the urban fabric, and have little recreational use 15 . The levels of PM2.5 in the city of São Paulo, measured by the stations of the Environmental Company of São Paulo State (Cetesb), exceed the maximum limits established by the World Health Organization (WHO) 18 , 19 .

In this study, we present data and analyze the exposure to green and built areas, maternal PM2.5, and odds ratio for preterm birth in the city of São Paulo in 2012.

METHODS

Study Area

The city of São Paulo has an area of 1,521 km2 and, in 2012 had a population of 11.37 million inhabitants 20 . The city’s climate, according to Koppen, is Cwa (humid subtropical climate), which is characterized by a dry winter and a rainy summer 21 .

The distribution of green areas in the city of São Paulo is uneven, as demonstrated by Amato et al. 17 . The largest concentrations of green areas are in regions of environmental protection, on the edges of the city.

Study population

The database of the Live Birth Information System (Sinasc) for 2012, geocoded by the mothers’ full address, was provided by the Epidemiology and Information Coordination of the São Paulo Health Secretariat ( Figure ), in a partnership for the development of the research project on Prematurity in the Municipality of São Paulo, approved by the Ethics Committee of the Municipal Health Secretariat (CAEE 26132714.1.0000.0086). For this study, the mothers’ addresses were grouped at the level of city districts. SINASC provides variables such as birth weight, gestational age, type of pregnancy (single, double, triple), presence of congenital anomalies, type of delivery, age, education and occupation of the mother, and number of previous births (Ordinance SVS nº 116/2009, 11/02/2009).

In this study, 174,215 records of single live births were analyzed. The following variables were used for the analysis: birth weight, gestational age, type of delivery, date of birth, Apgar 5 scale, and mother’s age, marital status and schooling 22 . The database was processed by keeping only birth weight above 0.5 and below 5 kg and excluding rows with blank data.

The age of the pregnant woman was categorized into groups: under 15; between 15 and 19.9; between 20 and 34.9; between 35 and 39.9; and over 40.

The variable for maternal educational level (last grade completed) was used as it appears in the SINASC database (educational level), as described below:

0 – No schooling;

1 – Primary Education I (1st to 4th grade);

2 – Primary Education II (5th to 8th grade);

3 – Secondary Education (9th to 12th grade);

4 – Incomplete Higher Education;

5 – Complete Higher Education.

Pregnancy Outcomes

This study used the gestational age records provided by the SINASC database, which were generated both based on the day of the last menstrual period and by ultrasound.

Gestational age was classified according to the Guidelines for Perinatal Care (American Academy of Pediatrics) and the American College of Obstetricians and Gynecologists 23 :

Extremely preterm: less than 28 weeks;

Very preterm: 28 weeks to 31 weeks and 6 days;

Moderate preterm: 32 weeks to 33 weeks and 6 days;

Late preterm: 34 weeks to 36 weeks and 6 days;

Preterm: less than 37 weeks;

Early term: 37 weeks to 38 weeks and 6 days;

Full term: 39 0/7 weeks to 40 weeks and 6 days;

Late term: 41 0/7 weeks to 41 weeks and 6 days;

Post-term: 42 weeks or more.

A binary variable (0,1) was created for the number of gestational weeks: preterm equals 1 (less than 37 weeks) and not preterm equals 0 (more than 37 weeks).

The variable “type of delivery” was divided into caesarean section or vaginal delivery.

The APGAR score is a system used to quickly assess the health of a newborn shortly after birth. It was developed by Dr. Virginia Apgar in 1952 and consists of five categories: heart rate, respiratory effort, muscle tone, irritability reflex, and skin color. It can be assessed in the first minute after birth (APGAR 1), five minutes after birth (APGAR 5) and, sometimes, 10 minutes after it, when the score is below 5. In this study, we will use the APGAR 5 24 , 25 .

Assessment of Exposure and Land Cover

The area of green exposure and land cover was analyzed according to the municipality’s administrative division into 96 districts 26 .

GeoSES was used as a socio-environmental correction factor, summarizing the main dimensions of the Brazilian socioeconomic context for research purposes 27 . GeoSES is a composite index and its dimensions are education, mobility, poverty, social and material deprivation, income, wealth, and segregation.

Pollution data was obtained from satellite images taken by the Copernicus Atmosphere Monitoring Service (CAMS) in 2012. Particulate matter 2.5 (PM2.5) data in μg/m3 were extracted from the images, using the average for the period in each district of the city of São Paulo 28 . This study used the annual means of pollutant, which do not consider the variations over the year, such as the seasons and climatic conditions.

Using the QGIS2.18.11 program, two different indicators of exposure to green areas were used: vegetation cover and the number of street trees. A digital map of the locations of street trees in São Paulo in 2010 was provided by the municipality itself (Geosampa) 29 . The map includes urban trees on sidewalks, street islands and traffic circles, and excludes trees in squares, parks, reserves and indoor public and private areas. The images had a resolution of 2 m at a scale of 1:25,000.

The orthophotos used in this study were provided by the Institute of Geosciences and Cartography of the State of São Paulo and had a spatial resolution of 2 meter-pixel, with three spectral bands: near infrared (NIR), blue and red. Land cover was classified using the Random Forest (RF) algorithm (QGIS2.18.11 program; Dtezaka Plugin). RF is a powerful learning classification algorithm, as well as one of the most accurate methods for classifying land cover 30 . In addition, it is a general term for ensemble methods that use tree-structured classifiers to train the algorithm, which creates several trees similar to the Classification and Regression Tree (CART) 31 .

In the classification, for each tree in the RF, there is a vote for the most popular class (pixel color) in the data input (polygon training sample = data input). The output of the classifier is determined by the majority of votes in the class 32 . For the training samples, classes were classified according to pixel color and spectral signature. In total, 150 training samples were prepared for each Land cover class. The images were classified into the following Land cover classes: tree canopy, grass cover, bare soil, cement floor, swimming pool, shade, roof (white, gray, dark, ceramic), asphalt, and river/lake (adapted from Myeong et al. 33 , 2003). For data analysis, the sum of the tree canopies and grass coverwas considered green space and the sum of the different roof types was considered built environment.

A false-color composite scheme was used to enable the detection of vegetation in the image. In this type of representation, vegetation appears in different shades of red, depending on its type and condition, due to its high reflectance in the NIR band 34 . Bare soil, roads, and buildings can appear in various shades of blue, yellow, or gray, depending on the composition material. The false color orthophoto composition used in this study was R (channel 1) = NIR band, G (channel 2) = red band, B (channel 3) = blue band.

Classification accuracy was determined using a classification error matrix, the Kappa index. The thematic maps used in this study had Kappa values equal to or greater than 81%, which is considered an accurate classification according to Landis and Koch 35 .

Databases of street trees and Land cover were evaluated in the 96 districts.

Data Analysis

These analyses were carried out to understand the association of the gestational week with environmental and sociodemographic exposure variables. Each variable was assessed in unadjusted models, which were then adjusted for logistic models in which the variables showed an association with at least one of the outcomes in the analysis. Binary logistic regression was used for the dichotomous dependent variables. The significance level adopted was p = 0.05. The results of the logistic regressions were presented as odds ratios (95% confidence intervals).

Logistic models were controlled for ethnicity, age, educational and marital status, air pollution, and socioeconomic status.

Land cover was used in quartiles and divided as follows ( Table 2 ):

Table 2. Distribution of quartiles of Land cover and particulate matter (PM)2,5.

Land cover Q1 (%) Q2 (%) Q3 (%) Q4 (%)
Green areas 15.4 (24.8) 25.8 (33.6) 34.6 (45.0) 46.0 (84.8)
Tree cover 6.9 (14.7) 15.7 (23.3) 24.3 (33.6) 34.6 (73.4)
Grass cover 3.4 (8.0) 9.05 (9.31) 10.31 (11.6) 12.6 (17.7)
Built area 4.6 (21.0) 22.0 (29.9) 30.9 (36.7) 37.7 (49.7)
PM2.5 11.8 (12.1) 13.2 (12.3) 13.3 (12.7) 13.7 (13.7)
Street trees 0.5 (4.8) 5.82 (6.8) 7.8 (9.73) 10.73 (16.2)

Q1 - the lowest percentage of Land cover within 25% of the population;

Q2 - the second lowest percentage of Land cover within 25% of the population (up to the median);

Q3 - the second highest percentage of Land cover within 25% of the population (above the median);

Q4 - the highest percentage of Land cover within 25% of the population.

To avoid multicollinearity, all models were built separately for each Land cover variable. A new variable called “green area” was created, defined as the sum of trees and grass cover; another variable called “built area” was established as the sum of the areas of all the roofs of different colors. The significance level adopted was p < 0.05.

RESULTS

In total, 174,215 records of single live births were found; the cases in which addresses were outside the city of São Paulo and those that did not contain information on the variables used in the study were excluded. Thus, 166,384 records were used, as shown in Table 1 .

Table 1. Descriptive analysis of birth variables (1a - sociodemographic and 1b - newborn health).

Characteristics n %
Sociodemographic (n = 166,384)
Maternal age
Mean (CV%) 27.7 (23.8%)  
Median [Min, Max] 28.0 [11.0, 52.0]  
Standard deviation 6.6  
Marital status of the mother
Single 75,261. 43.2
Married 68,082 39.08
Widow 278 0.16
Separated/divorced 2,451 1.41
Stable union 27,878 16
No data 58 0.03
Educational level
No schooling 17 0.01
Primary Education I 294 0.17
Primary Education II 2,019 1.16
Secondary Education 20,487 11.76
Incomplete Higher Education 103,185 59.23
Complete Higher Education 47,896 27.49
No data 169 0.1
Newborn health (n = 166,384)
APGAR Scale
0   0.09
1   0.13
2   0.05
3   0.06
4   0.11
5   0.22
6   0.33
7   0.94
8   4.23
9   34.86
10   58.65
No data   0.1
Presence of congenital abnormalities
Yes   1.84
No   98.02
No data   0.1
Gestational age
Preterm 18,434 12.31
Early term 61,147 36.06
Full term 73,537 42.63
Late term 9,702 5.62
Post-term 3,628 2.12
Birth Weight (CV)
Mean (CV) 3,162.90 17.7
Median [Min, Max] [500, 4,990]  
Standard deviation 354  
No data 6 0
Gestational age at delivery (CV)
Mean (CV%) 38.3 5.8
Median [Min, Max] 39.0 (19.0, 46.0)  
Standard deviation 2.21  
No data 2,196 1.3

Table 2 shows the distribution of quartiles according to Land cover, demonstrating that “green area” varies from 15.4% to 84.8%, while air pollution varies very little, from 11.8 to 13.7 μg/m3.

Table 3 shows the results of the “unadjusted and logistic models” analysis. The marital statuses “single” and “stable union” showed significant associations (increases of 2% and 4%, respectively) with preterm birth in relation to the marital status “married,” both in the logistic model analyses without adjustment and in the logistic analysis. The unadjusted logistic model analysis showed significance for all age groups, in relation to the 20 to 35 age group. In the logistic analysis, only age groups over 35 years were associated with preterm birth. The GeoSES mean was found to be positively associated with prematurity in the regressions of the unadjusted logistic model, although marginally, but this association did not occur in the logistic analysis.

Table 3. Results of unadjusted models and logistic models for gestational age at delivery < 37 weeks and Land cover.

Gestational Age at Delivery No adjustment Logistic
  Predictor Odds ratio CI p Odds ratio CI p
Marital status - ref: single Married ref --------- ------------ ------ ------- ------------- ------
Single 1.11 1.08 – 1.15 0.001 1.12 1.04 – 1.12 0.001
Widow 1.09 0.73 – 1.56 0.629 1.10 0.71 – 1.52 0.747
Separated/divorced 1.06 0.92 – 1.20 0.379 1.06 0.92 – 1.20 0.418
Stable union 1.11 1.06 – 1.16 0.001 1.11 1.02 – 1.12 0.003
Educational level - ref: no schooling No schooling 1.07 0.63 – 1.80 0.794 1.06 0.60 – 1.73 0.815
Primary Education I 1.46 1.04 – 2.05 0.026 1.42 1.00 – 1.97 0.040
Primary Education II 1.27 1.10 – 1.45 0.001 1.23 1.07– 1.41 0.003
Secondary Education 1.20 1.14 – 1.26 0.001 1.17 1.10 – 1.23 0.001
Incomplete Higher Education 1.09 1.04 – 1.12 0.001 1.06 1.02 – 1.10 0.003
Complete Higher Education ref --------- ------------ ------ ------- ------------- ------
Age - ref: 20-34.9 Ref: 20-34.9 --------- ------------ ------ ------- ------------- ------
= 15 1.59 1.30 – 1.92 0.001 1.08 0.86 – 1.36 0.472
15-19.9 1.27 1.21 – 1.32 0.001 1.05 0.99 – 1.11 0.064
35-39.9 1.19 1.13 – 1.23 0.001 1.20 1.14 – 1.27 0.001
≥40 1.43 1.32 – 1.54 0.001 1.30 1.18 – 1.42 0.001
Ethnicity - ref: white White --------- ------------ ------ ------- ------------- ------
Black 1.09 1.02 – 1.15 0.006 1.04 0.142
Asian 0.93 0.80 – 1.06 0.278 0.94 0.82 – 1.08 0.426
Mixed-race 1.01 0.97 – 1.04 0.519 0.96 0.93 – 1.00 0.065
Indigenous 0.86 0.68 – 1.06 0.177 0.80 0.63 – 0.99 0.050
Type of delivery - ref: vaginal Vaginal delivery --------- ------------ ------ ------- ------------- ------
Cesarean section 0.98 0.94 – 1.00 0.145 0.96 0.92 – 0.99 0.039
Prenatal appointments Number of appointments 0.933 0.92 - 0.93 0.001 0.93 0.93 - 0.94 0.022
Birth data APGAR at 5 minutes 0.82 0.81 – 0.83 0.001 0.97 0.96 – 0.98 0.001
Birth weight (kg) 1.00 0.99 – 0.99 0.001 0.99 0.99 – 0.99 0.001
Green spaces - quartiles Green Area Q1 [15.4-24.8] 1.07 1.02 – 1.11 0.002 1.08 1.03 – 1.13 0.001
Green Area Q2 [25.8-33.6] 1.04 0.99 – 1.08 0.104 1.05 1.00 – 1.10 0.018
Green Area Q3 [34.6-45] 0.99 0.94 – 1.029 0.516 0.99 0.94 – 1.3 0.671
Green Area Q4 [46-84.8] --------- ------------ ------ ------- ------------- ------
Tree cover - quartiles Tree cover Q1 [6.9-14.7] 1.06 1.01 – 1.10 0.011 1.07 1.02- 1.12 0.001
Tree cover Q2 [15.7-23.3] 1.03 0.98 – 1.07 0.206 1.04 0.99-1.09 0.059
Tree cover Q3 [24.3-33.6] 0.98 0.93 – 1.02 0.384 0.98 0.94 – 1.03 0.571
Tree cover Q4 [34.6-73.4] ------- ------------- ------ ------- ------------- ------
Grass cover- quartiles Grass cover - Q1 [3.4-8] 1.11 1.06 – 1.16 0.001 1.09 1.04 – 1.14 0.001
Grass cover - Q2 [9.05-9.31] 1.11 1.06 – 1.16 0.001 1.08 1.03 – 1.13 0.001
Grass cover - Q3 [10.31-11.6] 1.04 0.99 – 1.08 0.125 1.02 0.97 – 1.07 0.301
Grass cover - Q4 [12.6-17.7] ------- ------------- ------ ------- ------------- ------
Built area - quartiles Built area - Q1 [4.6-21] --------- ------------ ------ ------- ------------- ------
Built area - Q2 [22-29.9] 1.02 0.97 – 1.06 0.297 1.03 0.99 – 1.08 0.123
Built area - Q3 [30.9-36.7] 1.02 0.97 – 1.06 0.314 1.02 0.97 – 1.07 0.357
Built area - Q4 [37.7-49.7] 1.09 1.04 – 1.13 0.001 1.09 1.04 – 1.14 0.001
PM2.5 - quartiles PM2.5 - Q1 [11.8-12.1] --------- ------------ ------ ------- ------------- ------
PM2.5 - Q2 [13.2-12.3] 0.98 0.93 – 1.01 0.275 0.97 0.93 – 1.02 0.380
PM2.5 - Q3 [13.3-12.7] 1.02 0.97 – 1.06 0.388 1.01 0.96 – 1.05 0.613
PM2.5 - Q4 [13.7-13.7] 0.99 0.94 – 1.03 0.546 1.00 0.95 – 1.05 0.943
  GeoSES Mean 0.96 0.91 – 0.99 0.035 1.00 0.95 – 1.05 0.915
Street trees – quartiles (ref: 9.73-16.2) Street trees - Q1 [0.53-4.82] 1.01 0.96 – 1.05 0.595 1.00 0.95-1.04 0.940
Street trees - Q2 [5.82-6.8] 0.97 0.92 – 1.00 0.11 0.95 0.91-0.99 0.034
Street trees - Q3 [7.8-9.73] 1.00 0.95 – 1.04 0.975 1.01 0.95-1.04 0.945
Street trees - Q4 [9.73-16.2] ------- ------------- ------ ------- ------------- ------

PM: particulate matter; 95%CI: 95% confidence interval.

In the logistic regression analysis ( Table 3 ), prematurity was associated with the marital statuses “single” (OR = 1.12; 95%CI 1.04-1.12; p = 0.001) and “stable union” (OR = 1.1; 95%CI 1.02-1.12; p = 0.003) in relation to marital status “married”; the presence of street trees within the different districts in the second quartile (Q2: OR = 0.95; 95%CI 0.91-0.99; p = 0.034), in relation to the fourth quartile, was associated with a greater chance of preterm birth. Mothers aged over 35 years, from 35 to 39.9 years (OR = 1.20; 95%CI 1.14–1.27; p = 0.001) and over 40 years (OR = 1.30; 95%CI 1.18–1.4; p = 0.001) were found to have a higher chance of giving a premature birth when compared to the mothers aged from 20 to 34.9 years. The percentage of built areas within each district in the fourth quartile (OR = 1.09; 95%CI 1.04-1.14; p = 0.001) showed an increased association with prematurity in relation to the first quartile. The total percentage of green areas (Q1: OR = 1.08; 95%CI 1.03–1.13; p = 0.001 and Q2: OR = 1.05; 95%CI 1.00–1.10; p = 0.018), tree cover (Q1: OR = 1.07; 95%CI 1.02–1.12; p = 0.001), and grass cover (Q1: OR = 1.09; 95%CI 1.04–1.14; p = 0.001 and Q2: OR = 0.91; 95%CI 1.00–1.10; p = 0.018) showed an association with prematurity and higher chances of preterm birth in relation to the fourth quartile of each of the respective land covers. The number of prenatal appointments was also associated with preterm birth.

No statistical associations were found between the concentration of PM2.5 in the districts and the number of preterm births.

DISCUSSION

In this study, we analyzed the influence of different types of Land cover on the frequency of preterm births in the city of São Paulo in 2012. We found that the percentage of different types of green areas in the city’s districts reduced the chance of preterm birth by 5% to 9%. The results of this study also showed that a lower percentage of green areas is significantly associated with a higher chance of prematurity, as are densely built areas (> 37.7% of built area, in this study). The PM2.5 levels did not influence the parameters studied. To our knowledge, this is the first study to show beneficial associations between urban green areas and reduced prematurity in Brazil.

Prematurity was also found to be related to other factors, such as ethnicity, marital status, maternal age, type of delivery, prenatal appointments, birth weight, and Apgar score, which has already been confirmed in the literature 36 . In this study, we observed that Indigenous people have a higher chance of giving a premature birth, as described by Martinelli et al. 36 and Barreto et al. 37 .

The mother’s marital status and age also influence prematurity. In this study, pregnant women over the age of 35, single or in a stable union were found to be more likely to give birth prematurely, and these findings corroborate the results of other studies 38 .

An increased number of prenatal appointments is also well established in the literature as a factor that promotes a lower risk of prematurity 36 , 39 , which was also observed in this study.

Many studies have shown the beneficial association between exposure to green areas and pregnancy outcomes, but most of them were carried out in countries with a higher income or Human Development Index. Meta-analyses revealed that these associations are maintained when there is a high percentage of residential green space.

Villeuneuve et al. 41 found that the percentage of residential green space was positively associated with a reduction in the risk of preterm birth, low birth weight and small-for-gestational-age birth, unlike this study, in which the only factor found to be positively associated with residential green area was prematurity. Studies associating socioeconomic status with greater benefits from green areas indicate that these beneficial effects are greater in disadvantaged populations 42 , with the exception of an Australian study that showed disproportionate benefits among women from more affluent neighborhoods 43 . In this study, we used the GeoSES index within each district, but significant associations between this index and prematurity in the different districts were not found in the logistic analysis. It was discovered that, in the city of São Paulo, a greater number of green areas is not necessarily linked to socio-economic indices. In the southern part of the city, for example, there are large areas of native vegetation cover in districts with low socio-economic indices, and in the western region, the highest levels of vegetation cover are in the more affluent areas of the city—although the quality of and access to these green areas are probably different in the two regions.

The specific mechanisms by which green areas benefit pregnancy are unknown, but there are some possibilities: these areas may cause 1) a restorative psychological effect on mothers, by reducing stress; 2) a direct effect on cardiovascular health, by increasing physical activity, and on mental health, by stimulating social cohesion; 3) an indirect effect on cardiovascular health, by improving environmental conditions of pollution, temperature, and humidity 43 .

Green areas can improve the microclimate of regions and reduce pollution 2 . However, as Akaraci et al. 40 in a study in Sydney, Australia, we found no association between PM2.5 and prematurity, unlike studies in other countries 40 , 43 , 44 . Because the pollution measurements used in this study were derived from satellite images, individual exposure differences may not have been captured. Furthermore, this result points to an independent effect of green areas on pregnancy outcomes, beyond those associated with lower pollution rates 40 . Associations between air pollution and prematurity in São Paulo have indeed been found by studies that considered micro-scale exposure 10 , as well as associations of air pollution with impairment of placental angiogenesis and reduced placental function 45 .

This study reinforces the importance of road afforestation for human health, especially in large cities. We found an inverse association between the number of street trees within each district, obtained using the Geosampa platform, and preterm birth. Interestingly, a study in New York City 44 , which is also a megacity, showed that the number of street trees—not the percentage of green areas in residential surroundings—and the access to large green or blue areas correlated beneficially with the rate of premature births 46 .

There is no consensus on the minimum amount of exposure to green areas and its beneficial effects on health. Urban planners have recommended the 3-30-300 rule, i.e. each resident should be able to see at least three trees from their home, school or workplace, have no less than 30% tree cover in their neighborhood and live within 300 m of a public green space 47 . In this study, we observed that the beneficial associations were found in the districts within the highest quartile of green areas. A previous study by our group, which assessed mental health in the São Paulo metropolitan region, showed similar results: the beneficial association that was found between anxiety and green areas was only significant in the last quartile 15 . In their UK study assessing mortality and morbidity, Mitchell et al. 48 suggested that larger green areas may be more important for health effects than smaller spaces. When examining green areas by quartile, Tvina et al. 49 also observed that the higher quartiles were associated with lower chances of preterm birth.

Kent et al. 50 showed that, in the state of Alabama, United States, the frequency of premature births was higher among poorer African-American populations living in densely urbanized regions than among those living in rural areas. Our data reinforce these findings, showing that the chance of prematurity was higher in more densely built areas of São Paulo. Greater exposure to adverse environmental factors such as higher levels of air pollution, noise, temperature and stress may influence these results.

We found that few studies on this subject have been conducted outside the global north. It is, therefore, difficult to compare the results of the studies we found with our own, since the countries in which they were conducted differ greatly from Brazil. Castilo et al. 51 noted the lack of data from middle- and low-income countries when studying health and green areas. One of the few studies found was carried out in Iran and only analyzed birth weight, not prematurity; in addition, this country’s climate is very different from that of São Paulo 52 .

This study has some limitations. The year chosen for analysis was 2012, as the database and orthophotos of the city of São Paulo were accessible for that year. It would be interesting to compare these data with the most recent ones. Another limitation is the use of satellite imagery to analyze air pollution, as it has a low spatial resolution and does not show much variation between the city’s districts. In the city of São Paulo in 2012, there was still no PM2.5 monitoring network with the broad spatial distribution required for this study. The access to green areas and their quality were also not assessed. Moreover, the irregular distribution and lack of proper management of dense green areas, in addition to the fear of violence while accessing them, certainly interfere with the potential they have to improve health in the city of São Paulo.

CONCLUSIONS

Our data show that districts of São Paulo with more grass cover, street trees, and tree cover present a lower odds ratio for the occurrence of preterm births, which is reversed in more densely built areas. Additionally, the data reinforce the importance of intelligent urban planning: the city’s green areas need to be significantly densified based on strategies such as road afforestation.

Footnotes

Funding: Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp – Processes 16/15989-6; 09/02186-9; 09/53931-6 e 16/26082-1). Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Process 304277/2019-3).

REFERENCES

  • 1.Akaraci S, Feng X, Suesse T, Jalaludin B, Astell-Burt T. Greener neighbourhoods, healthier birth outcomes? Evidence from Australia. Environ Pollut . 2021 Jun;278:116814. doi: 10.1016/j.envpol.2021.116814. [DOI] [PubMed] [Google Scholar]
  • 2.Kloog I. Air pollution, ambient temperature, green space and preterm birth. Curr Opin Pediatr . 2019 Apr;31(2):237–243. doi: 10.1097/MOP.0000000000000736. [DOI] [PubMed] [Google Scholar]
  • 3.Sun Y, Ilango SD, Schwarz L, Wang Q, Chen JC, Lawrence JM, et al. Examining the joint effects of heatwaves, air pollution, and green space on the risk of preterm birth in California. Environ Res Lett . 2020 Oct;15(10):104099. doi: 10.1088/1748-9326/abb8a3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Grazuleviciene R, Dedele A, Danileviciute A, Vencloviene J, Grazulevicius T, Andrusaityte S, et al. The influence of proximity to city parks on blood pressure in early pregnancy. Int J Environ Res Public Health . 2014 Mar;11(3):2958–2972. doi: 10.3390/ijerph110302958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Casey JA, James P, Rudolph KE, Wu CD, Schwartz BS. Greenness and birth outcomes in a range of Pennsylvania communities. Int J Environ Res Public Health . 2016 Mar;13(3):311. doi: 10.3390/ijerph13030311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhang L, Shi S, Wu S, Yang Y, Xu J, Zhang Y, et al. Effects of greenness on preterm birth: a national longitudinal study of 3.7 million singleton births. Innovation (Camb) . 2022 Apr;3(3):100241. doi: 10.1016/j.xinn.2022.100241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Asta F, Michelozzi P, Cesaroni G, De Sario M, Badaloni C, Davoli M, et al. The modifying role of socioeconomic position and greenness on the short-term effect of heat and air pollution on preterm births in Rome, 2001-2013. Int J Environ Res Public Health . 2019 Jul;16(14):2497. doi: 10.3390/ijerph16142497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hung TH, Chen PH, Tung TH, Hsu J, Hsu TY, Wan GH. Risks of preterm birth and low birth weight and maternal exposure to NO2/PM2.5 acquired by dichotomous evaluation: a systematic review and meta-analysis. Environ Sci Pollut Res Int . 2022 Dec;30(4):9331–9349. doi: 10.1007/s11356-022-24520-5. [DOI] [PubMed] [Google Scholar]
  • 9.Nascimento FP, Almeida MF, Gouveia N. Individual and contextual socioeconomic status as effect modifier in the air pollution-birth outcome association. Sci Total Environ . 2022 Jan;803:149790. doi: 10.1016/j.scitotenv.2021.149790. [DOI] [PubMed] [Google Scholar]
  • 10.Saldiva SR, Barrozo LV, Leone CR, Failla MA, Bonilha EA, Bernal RT, et al. Small-scale variations in urban air pollution levels are significantly associated with premature births: a case study in São Paulo, Brazil. Int J Environ Res Public Health . 2018 Oct;15(10):2236. doi: 10.3390/ijerph15102236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Walani SR. Global burden of preterm birth. Int J Gynaecol Obstet . 2020 Jul;150(1):31–33. doi: 10.1002/ijgo.13195. [DOI] [PubMed] [Google Scholar]
  • 12.Leal MD, Esteves-Pereira AP, Nakamura-Pereira M, Torres JA, Theme-Filha M, Domingues RM, et al. Prevalence and risk factors related to preterm birth in Brazil. 127 Reprod Health . 2016 Oct;13(S3) Suppl 3 doi: 10.1186/s12978-016-0230-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bekkar B, Pacheco S, Basu R, DeNicola N. Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: a systematic review. JAMA Netw Open . 2020 Jun;3(6):e208243. doi: 10.1001/jamanetworkopen.2020.8243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chersich MF, Pham MD, Areal A, Haghighi MM, Manyuchi A, Swift CP. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis. BMJ . 2020 Nov;371:m3811. doi: 10.1136/bmj.m3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Moreira TC, Polize JL, Brito M, Silva DF, Filho, Chiavegato AD, Filho, Viana MC, et al. Assessing the impact of urban environment and green infrastructure on mental health: results from the São Paulo Megacity Mental Health Survey. J Expo Sci Environ Epidemiol . 2022;32:205–212. doi: 10.1038/s41370-021-00349-x. [DOI] [PubMed] [Google Scholar]
  • 16.Moreira TC, Polizel JL, Santos IS, Silva DF, Filho, Bensenor I, Lotufo PA, et al. green spaces, land cover, street trees and hypertension in the megacity of São Paulo. Int J Environ Res Public Health . 2020 Jan;17(3):725. doi: 10.3390/ijerph17030725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Amato-Lourenço LF, Moreira TC, Arantes BL, Silva DF, Filho, Mauad T. Metrópoles, cobertura vegetal, áreas verdes e saúde. Estud Av . 2016 Apr;30(86):113–130. doi: 10.1590/S0103-40142016.00100008. [DOI] [Google Scholar]
  • 18.World Health Organization . Occupational and Environmental Health Team. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment . Geneva: World Health Organization; 2006. [cited 2021 Oct 4]. https://apps.who.int/iris/handle/10665/69477 Report No.: WHO/SDE/PHE/OEH/06.02. [Google Scholar]
  • 19.São Paulo (Estado) Decreto No59.113, de 23 de abril de 2013. Estabelece novos padrões de qualidade do ar e dá providências correlatas. Diário Oficial União . 2013 Apr 24; [Google Scholar]
  • 20.Instituto Brasileiro de Geografia e Estatística [cited 2023 Apr 10]; IBGE divulga as estimativas populacionais dos municípios em 2012 . 2012 Aug 31; https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/14269-asi-ibge-divulga-as-estimativas-populacionais-dos-municipios-em-2012 [Google Scholar]
  • 21. [cited 2023 May 20]; Estação metereologica IAG-USP . http://www.estacao.iag.usp.br/seasons/index.php#:~:text=De%20acordo%20com%20a%20classifica%C3%A7%C3%A3o,e%20um%20ver%C3%A3o%20bastante%20chuvoso [Google Scholar]
  • 22.Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet . 2008 Jan;371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.American Academy of Pediatrics. American College of Obstetricians and Gynecologists. editors . Guidelines for perinatal care . 8th. Washington, DC: American Academy of Pediatrics; The American College of Obstetricians and Gynecologists; 2017. [Google Scholar]
  • 24.Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anest Anal . 1953;32(4):260–267. doi: 10.1213/00000539-195301000-00041. [DOI] [PubMed] [Google Scholar]
  • 25.Simon LV, Hashmi MF, Bragg BN. APGAR Score . StatPearls Treasure Island: StatPearls; 2023. [cited 2023 July 15]. http://www.ncbi.nlm.nih.gov/books/NBK470569/ [Google Scholar]
  • 26.São Paulo (Cidade) Subprefeituras [cited 2018 Dec 6]; A Secretaria Municipal das Subprefeituras . http://www.prefeitura.sp.gov.br/cidade/secretarias/regionais/subprefeituras/index.php?p=8978 [Google Scholar]
  • 27.Barrozo LV, Fornaciali M, André CD, Morais GA, Mansur G, Cabral-Miranda W, et al. GeoSES: a socioeconomic index for health and social research in Brazil. PLOS ONE . 2020 Apr 29;15(4):e0232074. doi: 10.1371/journal.pone.0232074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hammer MS, Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu NC, et al. Global estimates and long-term trends of fine particulate matter concentrations (1998-2018) Environ Sci Technol . 2020 Jul;54(13):7879–7890. doi: 10.1021/acs.est.0c01764. [DOI] [PubMed] [Google Scholar]
  • 29.São Paulo (Cidade) GeoSampa.. Mapa Digital da Cidade de São Paulo . São Paulo: 2020. [cited 2020 Dec 10]. http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx# [Google Scholar]
  • 30.Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens . 2012;67:93–104. doi: 10.1016/j.isprsjprs.2011.11.002. [DOI] [Google Scholar]
  • 31.Breiman L. Random forests. Mach Learn . 2001;45(1):5–32. doi: 10.1023/A:1010933404324. [DOI] [Google Scholar]
  • 32.Gislason PO, Benediktsson JA, Sveinsson JR. Random forests for land cover classification. Pattern Recognit Lett . 2006;27(4):294–300. doi: 10.1016/j.patrec.2005.08.011. [DOI] [Google Scholar]
  • 33.Myeong S, Nowak DJ, Hopkins PF, Brock RH. Urban cover mapping using digital, high-spatial resolution aerial imagery. Urban Ecosyst . 2001;5(4):243–256. doi: 10.1023/A:1025687711588. [DOI] [Google Scholar]
  • 34.Jackson RD, Huete AR. Interpreting vegetation indices. Prev Vet Med . 1991;11(3-4):185–200. doi: 10.1016/S0167-5877(05)80004-2. [DOI] [Google Scholar]
  • 35.Landis JR, Koch GG. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics . 1977 Jun;33(2):363–374. doi: 10.2307/2529786. [DOI] [PubMed] [Google Scholar]
  • 36.Martinelli KG, Dias Barbara AS, Leal ML, Belotti L, Garcia ÉM, Santos ET dos., Neto Prematuridade no Brasil entre 2012 e 2019: dados do Sistema de Informações sobre Nascidos Vivos. Rev Bras Estud Popul . 2021 Oct;38:e0173. doi: 10.20947/S0102-3098a0173. [DOI] [Google Scholar]
  • 37.Barreto CT, Tavares FG, Theme-Filha M, Farias YN, Pantoja LN, Cardoso AM. Baixo peso ao nascer, prematuridade e restrição de crescimento intra-uterino: resultados dos dados de base da primeira coorte de nascimentos indígenas no Brasil (coorte de nascimentos Guarani) 748 BMC Pregnancy Childbirth . 2020 Dec;20(1) doi: 10.1186/s12884-020-03396-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Souza RT, Cecatti JG, Passini R, Jr, Tedesco RP, Lajos GJ, Nomura ML, et al. The burden of provider-initiated preterm birth and associated factors: evidence from the Brazilian Multicenter Study on Preterm Birth (EMIP) PLoS One . 2016 Feb;11(2):e0148244. doi: 10.1371/journal.pone.0148244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Melo WA, Carvalho MD B. Análise multivariada dos fatores de riscos para prematuridade no sul do Brasil. Rev Gest Saúde . 2014;5(2):398–409. [Google Scholar]
  • 40.Akaraci S, Feng X, Suesse T, Jalaludin B, Astell-Burt T. A systematic review and meta-analysis of associations between green and blue spaces and birth outcomes. 2949 Int J Environ Res Public Health . 2020 Apr;17(8) doi: 10.3390/ijerph17082949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Villeneuve PJ, Lam S, Tjepkema M, Pinault L, Crouse DL, Osornio-Vargas AR, et al. Residential proximity to greenness and adverse birth outcomes in urban areas: findings from a national Canadian population-based study. Environ Res . 2022 Mar;204(Pt C):112344. doi: 10.1016/j.envres.2021.112344. [DOI] [PubMed] [Google Scholar]
  • 42.Dadvand P, Nazelle A, Figueras F, Basagaña X, Su J, Amoly E, et al. Green space, health inequality and pregnancy. Environ Int . 2012 Apr;40:110–115. doi: 10.1016/j.envint.2011.07.004. [DOI] [PubMed] [Google Scholar]
  • 43.Kihal-Talantikite W, Padilla CM, Lalloué B, Gelormini M, Zmirou-Navier D, Deguen S. Green space, social inequalities and neonatal mortality in France. 191 BMC Pregnancy Childbirth . 2013 Oct;13(1) doi: 10.1186/1471-2393-13-191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Abelt K, McLafferty S. Green Streets: urban green and birth outcomes. Int J Environ Res Public Health . 2017 Jul;14(7):771. doi: 10.3390/ijerph14070771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hettfleisch K, Carvalho MA, Hoshida MS, Pastro LD, Saldiva SR, Vieira SE, et al. Individual exposure to urban air pollution and its correlation with placental angiogenic markers in the first trimester of pregnancy, in São Paulo, Brazil. Environ Sci Pollut Res Int . 2021 Jun;28(22):28658–28665. doi: 10.1007/s11356-021-12353-7. [DOI] [PubMed] [Google Scholar]
  • 46.Nieuwenhuijsen MJ. Green Infrastructure and Health. Annu Rev Public Health . 2021 Apr;42(1):317–328. doi: 10.1146/annurev-publhealth-090419-102511. [DOI] [PubMed] [Google Scholar]
  • 47.Konijnendijk CC. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: introducing the 3-30-300 rule. J For Res . 2023;34(3):821–830. doi: 10.1007/s11676-022-01523-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Mitchell R, Astell-Burt T, Richardson EA. A comparison of green space indicators for epidemiological research. J Epidemiol Community Health . 2011 Oct;65(10):853–858. doi: 10.1136/jech.2010.119172. [DOI] [PubMed] [Google Scholar]
  • 49.Tvina A, Visser A, Walker SL, Tsaih SW, Zhou Y, Beyer K, et al. Residential proximity to tree canopy and preterm birth in Black women. Am J Obstet Gynecol MFM . 2021 Sep;3(5):100391. doi: 10.1016/j.ajogmf.2021.100391. [DOI] [PubMed] [Google Scholar]
  • 50.Kent ST, McClure LA, Zaitchik BF, Gohlke JM. Area-level risk factors for adverse birth outcomes: trends in urban and rural settings. 129 BMC Pregnancy Childbirth . 2013 Jun;13(1) doi: 10.1186/1471-2393-13-129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Castillo MD, Anenberg SC, Chafe ZA, Huxley R, Johnson LS, Kheirbek I, et al. Quantifying the health benefits of urban climate mitigation actions: current state of the epidemiological evidence and application in health impact assessments. 3 Front Sustain Cities . 2021 doi: 10.3389/frsc.2021.768227. [DOI] [Google Scholar]
  • 52.Torres Toda M, Miri M, Alonso L, Gómez-Roig MD, Foraster M, Dadvand P. Exposure to greenspace and birth weight in a middle-income country. Environ Res . 2020 Oct;189:109866. doi: 10.1016/j.envres.2020.109866. [DOI] [PubMed] [Google Scholar]
Rev Saude Publica. 2024 Mar 4;58:08. [Article in Portuguese]

Efeitos da cobertura de solo e poluição do ar no risco de nascimentos prematuros

Tiana C L Moreira I, Jefferson L Polizel II, Weeberb J Réquia III, Paulo Hilario Nascimento Saldiva I, Demostenes F da Silva Filho II, Silvia Regina Dias Medici Saldiva IV, Thais Mauad I

RESUMO

OBJETIVO

Avaliar a associação entre a idade gestacional e as áreas verdes, áreas construídas urbanas e a concentração de material particulado 2,5 (MP2,5) em São Paulo, analisando a distribuição irregular dessas áreas e os níveis de poluição acima do recomendado.

MÉTODOS

A população utilizada no estudo foi a dos nascidos vivos no ano de 2012, com os dados do Sistema de Informações sobre Nascidos Vivo (Sinasc) na cidade de São Paulo. Por meio de imagens de satélites e realizando a classificação supervisionada, obtivemos a distribuição e quantidade de áreas verdes e de áreas construídas, na cidade de São Paulo, assim como as concentrações de MP2,5. Regressões logísticas foram utilizadas para obter possíveis associações.

RESULTADOS

Os resultados do estudo mostram que menor percentual de áreas verdes está associado significativamente com maior chance de prematuridade. Maior densidade de construção foi associada positivamente com a razão de chance de nascimento prematuro. Não encontramos resultados significativos entre a poluição do ar (MP2,5) e prematuridade.

CONCLUSÕES

Os resultados deste estudo demostraram que áreas mais verdes em relação às áreas menos verdes são menos associadas a nascimentos prematuros.

Keywords: Parques Recreativos, Poluição do Ar, Recém-Nascido Prematuro, Ambiente Construído

INTRODUÇÃO

A associação entre desfechos gestacionais e exposições ambientais, como as áreas verdes urbanas e a poluição do ar, é um importante campo da epidemiologia ambiental.

Existem vários estudos demonstrando os benefícios de se morar próximo às áreas verdes e de frequentá-las em relação ao peso ao nascimento e/ou prematuridade 1 . Grazuleviciene et al. 4 realizaram um estudo com 3.416 mulheres no primeiro trimestre de gravidez, na Lituânia, investigando a influência benéfica da menor distância entre a residência e parques públicos e a pressão arterial sistêmica materna. Em outro estudo, gestantes que moravam até 1.250 m (ou 10 a 15 minutos de caminhada) de áreas verdes em cidades da Pensilvânia (EUA) apresentaram maior frequência de gestações a termo em relação a aquelas que moram a distâncias maiores do que 1.250 m 5 .

Grupos de menor poder aquisitivo parecem se beneficiar, especialmente, da exposição às áreas verdes. Na China, mães com menor poder aquisitivo expostas a essas áreas obtiveram os maiores benefícios dos desfechos de nascimento, principalmente relativos à prematuridade 6 . Akaraci et al. 1 , na Austrália, observaram que maiores coberturas de áreas verdes estavam relacionadas a menores chances de prematuridade na população mais vulnerável e com menor poder aquisitivo.

Outros estudos não encontraram evidências de que morar próximos a áreas verdes ou menos poluídas diminuía o risco de prematuridade. Asta et al. 7 , por exemplo, observaram que mulheres em Roma, mesmo morando mais próximas a áreas verdes, tinham aumentada probabilidade de prematuridade a cada aumento de 1˚C de temperatura, sem efeito modificador dos valores de MP10.

A exposição materna ao material particulado causou efeitos adversos sobre a prematuridade e peso ao nascer em diversos estudos ao redor do mundo 8 . Confirmando estes dados, um estudo realizado na cidade de São Paulo observou que um aumento de 10 μg/m3em O3e MP10estava associado à chance de prematuridade e baixo peso ao nascer 9 .

Nos anos de 2012 e 2013, foram registrados 348.337 nascidos vivos na cidade de São Paulo, com uma taxa de prematuridade de 11,9%, variando de 8,4% a 15,9% nos 96 distritos da cidade de São Paulo 10 , um valor muito semelhante às médias globais 11 . Leal et al. 12 observaram que, em uma população de 23.940 mulheres brasileiras em 2011 e 2012, 11,5% dos nascimentos foram prematuros; e que mães adolescentes, com baixa escolaridade e renda, formavam a maioria nessa taxa.

Existem poucos estudos em que variáveis ambientais e sua influência sobre desfechos gestacionais foram analisadas em São Paulo. A maior parte dos estudos foi realizada em países de maior poder aquisitivo que o nosso 8 , 13 , 14 ou em cidades com características distintas de poluição e de distribuição de áreas verdes das nossas megacidades. A distribuição das áreas verdes em São Paulo é bastante desigual, estando concentradas em locais mais ricos e intraurbanos. As áreas verdes localizadas em regiões periféricas são remanescentes das nativas, não localizadas na malha urbana e de pouco uso recreativo 15 . Os níveis de MP2,5na cidade de São Paulo, mensurados pelas estações da Companhia Ambiental do Estado de São Paulo (Cetesb), extrapolam os limites máximos estabelecidos pela Organização Mundial de Saúde (OMS) 18 , 19 .

Neste estudo, portanto, apresentamos dados analisando a exposição às áreas verdes e construídas e MP2,5materna, bem como a razão de chance de prematuridade no município de São Paulo no ano de 2012.

MÉTODOS

Área de Estudo

A cidade de São Paulo tem uma área de 1.521 km2e, em 2012, uma população de 11,37 milhões de habitantes 20 . O clima da cidade, de acordo com Koppen, é Cwa (clima subtropical úmido), caracterizado por um inverno seco e um verão chuvoso 21 .

A distribuição das áreas verdes na cidade de São Paulo é irregular, conforme demonstrado por Amato et al. 17 As maiores concentrações de áreas verdes estão em regiões de proteção ambiental, nas bordas da cidade.

População de Estudo

A base de dados do Sistema de Informações sobre Nascidos Vivo (Sinasc), do ano de 2012, geocodificada pelo endereço completo das mães foi fornecida pela Coordenação de Epidemiologia e Informação da Secretaria Municipal de Saúde do Município de São Paulo ( Figura ), por meio de uma parceria para o desenvolvimento do projeto de pesquisa sobre Prematuridade no Município de São Paulo, aprovado pelo Comitê de Ética da Secretaria Municipal de Saúde (CAEE 26132714.1.0000.0086). Para este estudo, os endereços foram agrupados no nível de distritos da cidade. O Sinasc fornece variáveis como peso ao nascer, idade gestacional, tipo de gestação (única, dupla, tripla), presença de anomalias congênitas, tipo de parto, idade, escolaridade e ocupação da mãe e número de partos prévios (Portaria SVS nº 116/2009, de 11/02/2009).

Figura. População de estudo na cidade de São Paulo.

Figura

Neste estudo, foram analisados 174.215 registros dos nascidos vivos únicos. Para a análise, foram utilizadas as variáveis: peso ao nascer, idade gestacional, tipo de parto, data de nascimento, escala de Apgar 5, bem como idade, estado civil e escolaridade da gestante 22 . O banco de dados foi tratado mantendo apenas o peso acima de 0,5 e abaixo de 5 kg e excluindo linhas com dados em branco.

A idade da gestante foi categorizada em faixas, sendo elas: menor que 15; entre 15 e 19,9; entre 20 e 34,9; entre 35 e 39,9; e acima de 40 anos.

A variável escolaridade (última série concluída) foi utilizada conforme consta no banco de dados de Sinasc (nível de escolaridade), conforme descrito a seguir:

0. Sem escolaridade;

1. Fundamental I (1ª a 4ª série);

2. Fundamental II (5ª a 8ª série);

3. Médio (antigo 2º grau);

4. Superior incompleto;

5. Superior completo.

Desfechos Gestacionais

Neste estudo a idade gestacional que o banco de dados do Sinasc fornece pode ser gerada tanto pelo dia da última menstruação quanto pelo ultrassom.

A idade gestacional é classificada de acordo com Guidelines for Perinatal Care (American Academy of Pediatrics) e The American College of Obstetricians and Gynecologists 23 :

Pré-termo extremo: menor que 28 semanas;

Muito pré-termo: 28 semanas a 31 semanas e 6 dias;

Pré-termo moderado: 32 semanas a 33 semanas e 6 dias;

Pré-termo tardio: 34 semanas a 36 semanas e 6 dias;

Pré-termo: menor que 37 semanas;

Termo inicial: 37 semanas a 38 semanas e 6 dias;

Termo total: 39 0/7 semanas a 40 semanas e 6 dias;

Termo tardio: 41 0/7 semanas a 41 semanas e 6 dias;

Pós-termo: 42 semanas ou mais.

Foi criada uma variável binária (0,1) referente à semana gestacional: quando prematuro é igual a 1 (menos de 37 semanas), e não prematuro igual a 0 (mais de 37 semanas).

A variável tipo de parto utilizada foi cesária ou parto normal.

O Apgar é um sistema de pontuação usado para avaliar rapidamente a saúde de um recém-nascido logo após o nascimento. Foi desenvolvido pela doutora Virginia Apgar, em 1952, e é composto por cinco categorias: frequência cardíaca, esforço respiratório, tônus muscular, reflexo de irritabilidade e cor da pele. Ele pode ser avaliado no primeiro minuto após o nascimento (Apgar 1), cinco minutos após o nascimento (Apgar 5) e, algumas vezes, após 10 minutos, quando o score for abaixo de 5. Neste estudo, iremos utilizar o Apgar 5 24 , 25 .

Avaliação da Exposição e Cobertura do Solo

A área de exposição ao verde e de cobertura do solo utilizada foi analisada de acordo com a divisão administrativa do município em 96 distritos 26 .

O GeoSES foi utilizado como fator de correção socioambiental, que resume as principais dimensões do contexto socioeconômico brasileiro para fins de pesquisa 27 . O GeoSES é um índice composto, que resume as principais dimensões do contexto socioeconômico brasileiro para fins de pesquisa: educação, mobilidade, pobreza, privação social e material, renda, riqueza e segregação.

Os dados de poluição foram obtidos por meio de imagens de satélite obtidas do The Copernicus Atmosphere Monitoring Service (CAMS) de 2012. Extraímos os dados de material particulado 2,5 (MP2,5) em μg/m3das imagens, utilizando a média do período em cada distrito da cidade de São Paulo 28 . Neste estudo, utilizamos as médias anuais do poluente, que não levam em consideração as variações durante o ano, que dependem das estações e condições climáticas.

Neste estudo, usando o programa QGIS2.18.11, foram utilizados dois indicadores diferentes de exposição a áreas verdes: cobertura vegetal e o número de árvores de rua. Um mapa digital das localizações das árvores de rua em São Paulo no ano de 2010 foi fornecido pelo próprio município (Geosampa) 29 . O mapa identificou árvores urbanas em calçadas, ilhas de rua e rotatórias e excluiu árvores em praças, parques, reservas e áreas públicas e privadas internas. As imagens tinham uma resolução de 2 m em uma escala de 1:25.000.

As ortofotos utilizadas neste estudo foram cedidas pelo Instituto de Geociências e Cartografia do Estado de São Paulo e tinham uma resolução espacial de 2 m de lado do pixel, com três bandas espectrais: infravermelho próximo (NIR), azul e vermelho. A classificação da cobertura do solo foi realizada utilizando-se o algoritmo de Random Forest (RF) (programa QGIS2.18.11; Plugin Dtezaka). O RF é um poderoso algoritmo classificador de aprendizagem, bem como um dos métodos mais precisos de classificação da cobertura de solo 30 . Além disso, é um termo geral para métodos de conjunto que usam classificadores do tipo árvore para treinar o algoritmo, que cria várias árvores semelhantes a Classification and Regression Tree (CART) 31 .

Para classificação, para cada árvore na RF há uma votação para a classe mais popular (cor do pixel) na entrada de dados (polígono de amostras do treinador = entrada de dados). A saída do classificador é determinada pela maioria de votos da classe 32 . Para as amostras do treinador, a classificação das classes foi realizada de acordo com a cor do pixel e a assinatura espectral. Cento e cinquenta amostras de treinamento foram preparadas para cada classe de cobertura da terra. As imagens foram classificadas dentro das seguintes classes de cobertura do solo: copa das árvores, vegetação rasteira, solo nu, piso de cimento, piscina, sombra, telhado (branco, cinza, escuro, cerâmico), asfalto e rio/lago (adaptado de Myeong et al. 33 , 2003). Para a análise dos dados, considerou-se a soma das copas das árvores e da vegetação rasteira como espaço verde e a soma dos diferentes tipos de telhado como áreas construídas.

Usamos um esquema composto de falsa cor para permitir a detecção de vegetação na imagem. Neste tipo de representação, a vegetação aparece em diferentes tons de vermelho, dependendo do tipo e condição, devido à sua alta refletância na banda NIR 34 . Solo nu, estradas e edifícios podem aparecer em vários tons de azul, amarelo ou cinza, dependendo do material de composição. A composição ortofoto de falsa cor utilizada neste estudo foi R (canal 1) = banda NIR, G (canal 2) = banda vermelha, B (canal 3) = banda azul.

A acurácia da classificação foi determinada por meio de uma matriz de erro de classificação, o índice Kappa. Os mapas temáticos utilizados neste estudo apresentaram valores de Kappa iguais ou superiores a 81%, o que é considerado uma classificação acurada de acordo com Landis e Koch 35 .

Bancos de dados de árvores de rua e cobertura do solo foram avaliados nos 96 distritos.

Análise de Dados

Estas análises foram realizadas para entender a associação entre a semana gestacional e as variáveis de exposição ambiental e sociodemográficas. Examinamos cada variável em modelos sem ajuste, que, a seguir, foram ajustados para modelos logísticos, nos quais as variáveis mostraram associação com, pelo menos, um dos desfechos na análise. A regressão logística binária foi utilizada para as variáveis dependentes dicotômicas. O nível de significância adotado foi de p = 0,05. Os resultados das regressões logísticas foram apresentados como odds ratio (intervalos de confiança de 95%).

Os modelos logísticos foram controlados para a raça, idade, escolaridade e estado civil, poluição do ar e condição socioeconômica.

A cobertura do solo foi utilizada em quartis e dividida da seguinte forma ( Tabela 2 ):

Tabela 2. Distribuição dos quartis das coberturas de solo e material particulado (MP)2,5.

Cobertura de solo Q1 (%) Q2 (%) Q3 (%) Q4 (%)
Áreas verdes 15,4 (24,8) 25,8 (33,6) 34,6 (45,0) 46,0 (84,8)
Cobertura arbórea 6,9 (14,7) 15,7 (23,3) 24,3 (33,6) 34,6 (73,4)
Vegetação rasteira 3,4 (8,0) 9,05 (9,31) 10,31 (11,6) 12,6 (17,7)
Área construída 4,6 (21,0) 22,0 (29,9) 30,9 (36,7) 37,7 (49,7)
MP2,5 11,8 (12,1) 13,2 (12,3) 13,3 (12,7) 13,7 (13,7)
Árvores de rua 0,5 (4,8) 5,82 (6,8) 7,8 (9,73) 10,73 (16,2)
  • Q1 – a menor percentagem de cobertura do solo dentro de 25% da população;

  • Q2 – a segunda menor percentagem de cobertura do solo dentro de 25% da população (até à mediana);

  • Q3 – a segunda maior percentagem de cobertura do solo dentro de 25% da população (acima da mediana);

  • Q4 – a maior percentagem de cobertura do solo dentro de 25% da população.

Todos os modelos foram construídos separando cada variável de cobertura do solo, para evitar a multicolinearidade. Uma nova variável, chamada “área verde”, foi criada, definida como a soma de árvores e de vegetação rasteira; outra, chamada “área construída”, foi a soma de todos os telhados de cores diferentes. O nível de significância adotado foi de p < 0,05.

RESULTADOS

Dos 174.215 registros de nascidos únicos vivos, foram retirados os casos cujos endereços eram de fora do município de São Paulo e os que não continham as informações relativas às variáveis utilizadas no estudo, resultando em 166.384 registros, conforme observado na Tabela 1 .

Tabela 1. Análise descritiva das variáveis de nascimento (1a - sociodemográfico e 1b- saúde recém-nascido).

Variáveis n %
Sociodemográfico (n = 166.384)
Idade da mãe
Média (CV%) 27,7 (23,8%)  
Mediana [Min, Max] 28,0 [11,0, 52,0]  
Desvio padrão 6,6  
Estado civil mãe
Solteira 75.261 43,2
Casada 68.082 39,08
Viúva 278 0,16
Separada/divorciada 2.451 1,41
União estável 27.878 16
Sem dados 58 0,03
Escolaridade
Sem escolaridade 17 0,01
Fundamental 1 294 0,17
Fundamental 2 2.019 1,16
Médio 20.487 11,76
Superior incompleto 103.185 59,23
Superior completo 47.896 27,49
Sem dados 169 0,1
Saúde recém-nascido (n = 166.384)
Escala de Apgar
0   0,09
1   0,13
2   0,05
3   0,06
4   0,11
5   0,22
6   0,33
7   0,94
8   4,23
9   34,86
10   58,65
Sem dados   0,1
Presença de anormalidade congênitas
Presente   1,84
Ausente   98,02
Sem dados   0,1
Tempo gestacional
Pré termo 18.434 12,31
Termo inicial 61.147 36,06
Termo total 73.537 42,63
Termo tardio 9.702 5,62
Pós termo 3.628 2,12
Peso nascimento (CV)
Média (CV) 3.162,90 17,7
Mediana [Min, Max] [500, 4.990]  
Desvio padrão 354  
Sem dados 6 0
Idade gestacional do parto (CV)
Média (CV%) 38,3 5,8
Mediana [Min, Max] 39,0 [19,0, 46,0]  
Desvio padrão 2,21  
Sem dados 2.196 1,3

Na Tabela 2 , podemos observar a distribuição dos quartis de acordo com as coberturas de solo, mostrando que “área verde” possui uma variação que vai de 15,4 % até 84,8%, já a poluição do ar varia muito pouco, de 11.8 até 13.7 μg/m3.

Os resultados da análise “modelos sem ajuste e logísticas” podem ser vistos na Tabela 3 . Os estados civis “solteira” e “união estável” mostraram associação (aumento de 2% e 4%, respectivamente) com a prematuridade, em relação ao estado civil “casada”, nas análises modelo logístico sem ajuste e mantendo a significância na análise logística. A faixa etária na análise modelo logístico sem ajuste foi significante em todas as faixas etárias, em relação à faixa etária de 20 até 35 anos. Na análise logística, apenas as faixas acima de 35 anos mostraram estar associadas com a prematuridade. A média GeoSES está associada positivamente com a prematuridade nas regressões modelo logístico sem ajuste apesar de marginal, porém, essa associação não ocorreu na análise logística.

Tabela 3. Resultado dos modelos sem ajuste e modelos logísticos para idade gestacional do parto < 37 semanas e cobertura de solo.

Idade Gestacional do Parto Sem ajuste Logística
  Preditor Razão de chances IC p Razão de chances IC p
Estado civil - ref solteira Casada ref --------- ------------ ------ ------- ------------- ------
Solteira 1,11 1,08 – 1,15 0,001 1,12 1,04 – 1,12 0,001
Viúva 1,09 0,73 – 1,56 0,629 1,10 0,71– 1,52 0,747
Separada/divorciada 1,06 0,92 – 1,20 0,379 1,06 0,92 – 1,20 0,418
união estável 1,11 1,06 – 1,16 0,001 1,11 1,02 – 1,12 0,003
Escolaridade - ref sem escolaridade Sem escolaridade 1,07 0,63 – 1,80 0,794 1,06 0,60 – 1,73 0,815
Fundamental 1 1,46 1,04 – 2,05 0,026 1,42 1,00– 1,97 0,040
fundamental 2 1,27 1,10 – 1,45 0,001 1,23 1,07– 1,41 0,003
médio 1,20 1,14 – 1,26 0,001 1,17 1,10 – 1,23 0,001
superior incompleto 1,09 1,04 – 1,12 0,001 1,06 1,02 – 1,10 0,003
superior completo ref --------- ------------ ------ ------- ------------- ------
Idade mãe - ref 20-34,9 Ref : 20-34,9 --------- ------------ ------ ------- ------------- ------
=15 1,59 1,30 – 1,92 0,001 1,08 0,86 – 1,36 0,472
15-19,9 1,27 1,21 – 1,32 0,001 1,05 0,99 – 1,11 0,064
35-39,9 1,19 1,13 – 1,23 0,001 1,20 1,14 – 1,27 0,001
>=40 1,43 1,32 – 1,54 0,001 1,30 1,18 – 1,42 0,001
Raça - ref branca Branca --------- ------------ ------ ------- ------------- ------
Negra 1,09 1,02 – 1,15 0,006 1,04 0,142
Amarela 0,93 0,80 – 1,06 0,278 0,94 0,82 – 1,08 0,426
Parda 1,01 0,97 – 1,04 0,519 0,96 0,93 – 1,00 0,065
Indígenas 0,86 0,68 – 1,06 0,177 0,80 0,63 – 0,99 0,050
Tipo de parto - ref normal Parto normal --------- ------------ ------ ------- ------------- ------
Parto cesárea 0,98 0,94 – 1,00 0,145 0,96 0,92 – 0,99 0,039
Consulta pré-natal Número de consultas 0,933 0,92- 0,93 0,001 0.93 0.93 - 0.94 0.022
Dados nascimento APGAR aos 5 minutos 0,82 0,81 – 0,83 0,001 0,97 0,96 – 0,98 0,001
Peso ao nascimento (kg) 1,00 0,99 – 0,99 0,001 0,99 0,99 – 0,99 0,001
Espaços verdes - quartis Área verde 1 Q [15,4-24,8] 1,07 1,02 – 1,11 0,002 1,08 1,03 - 1,13 0,001
Área verde 2 Q [25,8-33,6] 1,04 0,99 – 1,08 0,104 1,05 1,00 – 1,10 0,018
Área verde 3 Q [34,6-45] 0,99 0,94 – 1,029 0,516 0,99 0,94 - 1,3 0,671
Área verde 4 Q [46-84,8] --------- ------------ ------ ------- ------------- ------
Cobertura arbórea - quartis Cobertura arbórea 1 Q [6,9-14,7] 1,06 1,01 – 1,10 0,011 1,07 1.02- 1.12 0,001
Cobertura arbórea 2 Q [15,7-23,3] 1,03 0,98 – 1,07 0,206 1,04 0,99-1,09 0,059
Cobertura arbórea 3 Q [24,3-33,6] 0,98 0,93 – 1,02 0,384 0,98 0,94 – 1,03 0,571
Cobertura arbórea 4 Q [34,6-73,4] ------- ------------- ------ ------- ------------- ------
Vegetação rasteiro - quartis Verde rasteiro - 1 Q [3,4-8] 1,11 1,06 – 1,16 0,001 1,09 1,04 – 1,14 0,001
Verde rasteiro - 2 Q [9,05-9,31] 1,11 1,06 – 1,16 0,001 1,08 1,03 – 1,13 0,001
Verde rasteiro - 3 Q [10,31-11,6] 1,04 0,99 – 1,08 0,125 1,02 0,97 – 1,07 0,301
Verde rasteiro - 4 Q [12,6-17,7] ------- ------------- ------ ------- ------------- ------
Área construída - quartis área construída - 1 Q [4,6-21] --------- ------------ ------ ------- ------------- ------
área construída - 2 Q [22-29,9] 1,02 0,97 – 1,06 0,297 1,03 0,99 – 1,08 0,123
área construída - 3 Q [30,9-36,7] 1,02 0,97 – 1,06 0,314 1,02 0,97 – 1,07 0,357
área construída - 4 Q [37,7-49,7] 1,09 1,04 – 1,13 0,001 1,09 1,04 – 1,14 0,001
Pm2,5- quartis PM2,5- 1 Q[11,8-12,1] --------- ------------ ------ ------- ------------- ------
PM2,5- 2 Q[13,2-12,3] 0,98 0,93 – 1,01 0,275 0,97 0,93 – 1,02 0,380
PM2,5- 3 Q [13,3-12,7] 1,02 0,97 – 1,06 0,388 1,01 0,96 – 1,05 0,613
PM2,5- 4 Q [13,7-13,7] 0,99 0,94 – 1,03 0,546 1,00 0,95 – 1,05 0,943
  MediaGeoSES 0,96 0,91 – 0,99 0,035 1,00 0,95 – 1,05 0,915
Árvores de rua – quartis (Ref: 9,73-16,2) Árvores de rua - 1 Q [0.53-4.82] 1,01 0,96 – 1,05 0,595 1.00 0.95-1.04 0.940
Árvores de rua - 2 Q [5,82-6,8] 0,97 0,92 – 1,00 0,11 0.95 0.91-0.99 0.034
Árvores de rua - 3 Q [7,8-9,73] 1,00 0,95 – 1,04 0,975 1.01 0.95-1.04 0.945
Árvores de rua - 4 Q [9,73-16,2] ------- ------------- ------ ------- ------------- ------

MP: material particulado; IC95%: intervalo de confiança de 95%.

Na análise de regressão logística ( Tabela 3 ), a prematuridade se associou ao estado civil “solteiro” (OR = 1,12; IC95% 1,04–1,12; p = 0,001) e “união estável” (OR = 1,1; IC95% 1,02–1,12; p = 0,003), em relação ao estado civil “casado”; presença de árvores de rua no segundo quartil (Q2: OR = 0,95; IC95% 0,91–0,99; p = 0,034) dentro dos diferentes distritos, em relação ao quarto quartil, mostrou mais chance de prematuridade. A idade da mãe ser maior de 35 anos ou de 35 a 39,9 anos: OR = 1,20; IC95% 1,14–1,27; p = 0,001; e acima de 40 anos: OR = 1,30; IC95% 1,18–1,4; p = 0,001, indicou mais chance de prematuridade em relação a faixa etária de 20 até 34,9 anos. A porcentagem de áreas construídas no quarto quartil (OR = 1,09; IC95% 1,04–1,14; p = 0,001), dentro de cada distrito, mostrou aumento da associação com prematuridade em relação ao primeiro quartil. A porcentagem total de áreas verdes (Q1: OR = 1,08; IC95% 1,03–1,13; p = 0,001 e Q2: OR = 1,05; IC95% 1,00–1,10; p = 0,018), cobertura arbórea (Q1: OR = 1,07; IC95% 1,02–1,12; p = 0,001) e vegetação rasteira (Q1: OR = 1,09; IC95% 1,04–1,14; p = 0,001 e Q2: OR = 0,91; IC95% 1,00–1,10; p = 0,018) mostraram associação com prematuridade e mais chances de nascimentos prematuros, em relação ao quarto quartil de cada uma das respectivas coberturas de solo. O número de consultas pré-natal também mostrou associação com os nascimentos prematuros.

Não foram encontradas associações estatísticas entre a concentração de MP2,5nos distritos e número de nascidos prematuros.

DISCUSSÃO

Neste estudo, analisamos a influência do tipo de cobertura do solo sobre a frequência de prematuridade na cidade de São Paulo, em 2012. Observamos que a porcentagem dos diversos tipos de áreas verdes nos distritos da cidade pôde diminuir de 5% até 9% a chance de nascimentos prematuros. Os resultados deste estudo também mostraram que um menor percentual de áreas verdes está associado significativamente a maior chance de prematuridade, assim como áreas densamente construídas (> 37,7% de área construída neste estudo). Não houve influência dos níveis de MP2,5nos parâmetros estudados. De nosso conhecimento, este é o primeiro estudo mostrando as associações benéficas entre a existência de áreas verdes urbanas e a baixa da prematuridade no Brasil.

A prematuridade também está relacionada a outros fatores, como raça, estado civil, idade materna, tipo de parto, consulta pré-natal, peso e Apgar, já bem estabelecidos na literatura 36 . Neste estudo, observamos que indígenas têm uma maior chance de prematuridade, assim como descrito por Martinelli et al. 36 e Barreto et al. 37

O estado civil e a idade da mãe também influenciam na prematuridade. Neste estudo, gestantes com idade acima de 35 anos, solteiras ou em união estável possuem mais chance de parto prematuro, estes achados corroboram com resultados de outros estudos 38 .

O aumento de consultas pré-natal também está bem estabelecido na literatura como fator de menor risco de prematuridade 36 , 39 . Este fator também foi observado neste estudo.

Muitos estudos já foram realizados mostrando a associação benéfica entre exposição a áreas verdes e desfechos gestacionais, mas grande parte foi realizada em países de maior renda ou Índice de Desenvolvimento Humano 40 . Meta-análises revelam que tais associações são mantidas quando há alta porcentagem de área verde residencial.

Villeuneuve et al. 41 observaram que a porcentagem de área verde residencial esteve associada positivamente à redução dos riscos de nascimento prematuro, baixo peso ao nascer e nascituros pequenos para a idade gestacional; diferentemente deste estudo, em que a única associação positiva foi a prematuridade. Estudos que associam status socioeconômico a maiores benefícios das áreas verdes apontam que os efeitos benéficos são maiores nas populações desprovidas 42 , com exceção de um estudo australiano que mostrou benefícios desproporcionais entre mulheres de bairros mais afluentes 43 . Nesta pesquisa, usamos o índice GeoSES dentro de cada distrito, mas associações significativas entre este índice e prematuridade nos diferentes distritos não foram encontradas na análise logística. Na cidade de São Paulo, a maior ocorrência de áreas verdes não está necessariamente ligada aos índices socioeconômicos. A região sul da cidade, por exemplo, tem grandes áreas de cobertura vegetal nativa em distritos com baixos índices socioeconômicos. Já na região oeste, os maiores índices de cobertura vegetal estão nas áreas mais afluentes da cidade. Mesmo que, provavelmente, a qualidade e o acesso a estas áreas verdes sejam diferentes nas duas regiões.

Os mecanismos específicos pelos quais as áreas verdes trariam benefícios gestacionais não são conhecidos, mas algumas vias são plausíveis: 1) efeito psicológico restaurativo na mãe, com diminuição do estresse; 2) ação direta na saúde cardiovascular, por aumentar atividade física, e na saúde mental, por estimular a coesão social; 3) ação indireta por melhora das condições ambientais de poluição, temperatura e umidade 43 .

As áreas verdes são capazes de melhorar o microclima de regiões e diminuir a poluição 2 . Porém, assim como Akaraci et al. 40 em um estudo em Sydney, Austrália, não encontramos associação entre MP2,5e prematuridade, diferentemente de estudos em outros países 40 , 43 , 44 . Pelo fato de as medidas de poluição neste estudo terem sido derivadas de imagens de satélite, é possível que diferenças de exposição individuais não tenham sido captadas. Além disso, este resultado aponta um efeito independente das áreas verdes sobre os resultados do nascimento, para além dos associados a menores taxas de poluição 40 . De fato, associações entre poluição do ar e prematuridade em São Paulo foram encontrados em estudos onde houve microescala de exposição 10 e, também, prejuízo na angiogênese placentária e redução da função placentária 45 .

Este estudo reforça a importância da arborização viária na saúde humana, principalmente nas grandes cidades. Encontramos associação inversa entre o número de árvores de rua dentro de cada distrito, obtidas por meio da plataforma Geosampa, e os nascimentos prematuros. Curiosamente, um estudo na cidade de Nova Iorque 44 , também uma megacidade, mostrou que o número de árvores de ruas – e não a porcentagem de áreas verdes no entorno residencial – e o acesso a grandes áreas verdes ou azuis correlacionaram-se de maneira benéfica com o índice de nascimentos prematuros 46 .

Não existe consenso sobre a quantidade mínima de exposição às áreas verdes e seus efeitos benéficos à saúde. Urbanistas têm recomendado a regra do 3-30-300, isto é, que cada morador tenha pelo menos a vista de três árvores de sua casa, escola ou trabalho, não menos de 30% de cobertura arbórea no seu bairro e que esteja a 300 m de um espaço público de áreas verdes 47 . Neste estudo, observamos que as associações benéficas se apresentam nos distritos dentro do maior quartil de áreas verdes. Estudo anterior do nosso grupo, avaliando a saúde mental na região metropolitana de São Paulo, mostrou resultados similares, em que a associação benéfica entre ansiedade e áreas verdes só se mostrou significante no último quartil 15 . Mitchell et al. 48 sugerem que maiores áreas verdes podem ser mais importantes para os efeitos na saúde do que espaços menores, em seu estudo no Reino Unido que avalia mortalidade e morbidade. Tvina et al. 49 também observaram que, examinando as áreas verdes por quartil, os maiores foram associados a menores chances de parto prematuro.

Kent et al. 50 demonstraram que, no estado do Alabama, havia maior frequência de nascimentos prematuros nas populações afro-americanas mais pobres que viviam em regiões densamente urbanizadas, quando comparadas com a região rural. Nossos dados reforçam esses achados, mostrando maior chance de prematuridade em regiões mais densamente construídas de São Paulo. Maior exposição a fatores ambientais adversos, como maiores níveis de poluição do ar, ruído, temperatura e estresse podem influenciar estes resultados.

Poucos estudos são encontrados fora do eixo do norte global, sendo difícil comparar resultados de países com tantas diferenças, como o Brasil. Castilo et al. 51 observaram a falta de dados de países de média e baixa renda estudando saúde e áreas verdes. Um dos poucos estudos encontrados foi desenvolvido no Irã e analisou apenas peso ao nascer e não prematuridade, além disso, o clima do país é muito diferente do de São Paulo 52 .

Este trabalho possui algumas limitações. O ano de estudo escolhido foi 2012, pois nele havia acessibilidade ao banco de dados e as ortofotografias da cidade de São Paulo. Seria interessante comparar estes dados com os mais recentes. Outra limitação é a utilização da imagem de satélite para a análise de poluição do ar, que possui uma baixa resolução espacial, não mostrando uma grande variação entre os distritos da cidade. Na cidade de São Paulo, em 2012, ainda não existia a rede de monitoramento de MP2,5com a ampla distribuição espacial necessária para este estudo. Também não foi avaliado o acesso às áreas verdes, nem sua qualidade. Além disso, a distribuição irregular, a falta de manejo adequado e o medo da violência ao acesso a áreas verdes densas certamente interferem no potencial salutogênico das áreas verdes na cidade de São Paulo.

CONCLUSÕES

Nossos dados apontam que nos distritos de São Paulo com maior cobertura arbórea, vegetação rasteira e número de árvores de rua existe uma razão de chance menor de nascimentos prematuros, que inverte-se em áreas mais densamente construídas. Além disso, é reforçada a necessidade de planejamento inteligente, no sentido de adensar significativamente as áreas verdes da cidade, incluindo arborização urbana.

Footnotes

Financiamento: Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp – processos 16/15989-6; 09/02186-9; 09/53931-6 e 16/26082-1). Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - processo 304277/2019-3).


Articles from Revista de Saúde Pública are provided here courtesy of Universidade de São Paulo. Faculdade de Saúde Pública.

RESOURCES