Abstract
颅脑创伤是世界范围内死亡和致残的主要原因,给公共健康带来了巨大的威胁,但目前的诊断和治疗手段十分有限。胞外体是介导细胞间通信和物质转运的微囊泡,其中包含了丰富的非编码RNA。它们参与颅脑创伤后的病理生理反应过程,但具体的作用机制仍不明确。作为胞外体内容物的重要组成部分,非编码RNA对研究颅脑创伤的诊断、精准治疗、疗效评估、预后预测及并发症的防治等均具有重要意义。
Keywords: 胞外体, 非编码RNA, 颅脑创伤
Abstract
Traumatic brain injury (TBI) is a main cause of death and disability worldwide, posing a serious threat to public health. But currently, the diagnosis and treatments for TBI are still very limited. Exosomes are a group of extracellular vesicles and participate in multiple physiological processes including intercellular communication and substance transport. Non-coding RNAs (ncRNA) are of great abundancy as cargo of exosomes. Previous studies have shown that ncRNAs are involved in several pathophysiological processes of TBI. However, the concrete mechanisms involved in the effects induced by exosome-derived ncRNA remain largely unknown. As an important component of exosomes, ncRNA is of great significance for diagnosis, precise treatment, response evaluation, prognosis prediction, and complication management after TBI.
Keywords: exosomes, non-coding RNA, traumatic brain injury
颅脑创伤(traumatic brain injury,TBI)是由外部机械力作用产生的神经系统损伤,全球每年新发人数超过5 000万[1-2]。一项基于人群的大规模研究[3]表明:中国每年有77~89万新发TBI病例。TBI会引起长期的认知缺陷与神经退行性变,而目前的治疗方法尚无突破[4]。临床上,应尽可能减轻继发性颅脑损伤、维持正常生理功能和内环境的稳态是改善TBI预后的关键[2]。
细胞外囊泡(extracellular vesicles,EVs)是直径为40~1 000 nm的双层磷脂膜囊泡,根据其大小、组成和生物发生途径可分为3类:胞外体(exosome)、微囊泡和凋亡小体[5-6]。胞外体是特殊类型的EVs,粒径区间为50~150 nm。核酸、蛋白质和脂质等生物活性物质经由EVs运载,且在胞外体内富集。胞外体由多种细胞分泌至细胞外环境中,在各类生物体液中均可检测到[7-9]。不同细胞在特定的病理、生理条件下产生的胞外体数量及内容物具有明显差异。此外,由于特异性黏附分子的存在,胞外体能够向特定的细胞交付它们的“货物”,从而调节靶细胞功能。胞外体参与体内细胞间的信息沟通与物质转运,介导分化、免疫、神经信号传递、肿瘤转移等生物过程[6, 10]。基于胞外体内容物的组学研究在发掘生物标志物、疾病治疗、预后和疗效评估方面凸显出巨大潜力[11]。
非编码RNA(non-coding RNA,ncRNA)是一类不参与翻译编码的特殊RNA,包括微RNA(microRNA,miRNA)、长链非编码RNA(long non-coding RNA,lncRNA)、环形RNA(circular RNA,circRNA)等。胞外体内ncRNA含量丰富,它们参与细胞间调控的作用得到了证实[12]。TBI后miRNA表达水平在大脑皮层、海马体、血液和脑脊液中改变显著[13-14];lncRNA参与TBI后的多种病理过程,是重要的治疗靶点和生物标志物[15-16];circRNA作为调节因子,也参与TBI相关的基因表达、细胞再生等过程[17-18]。这些使得胞外体ncRNA有望成为TBI诊断、精准治疗、预后评价的重要突破口[16, 19-20]。
TBI会引发体内一系列应激改变,包括胞外体的改变。一方面,TBI后体液胞外体数量增加,经历最高峰值后逐渐回落至基础水平,提示胞外体高度参与损伤后多种自身调节过程[21];另一方面,胞外体内容物表达也会发生明显变化。机体对疾病或损伤的反应会通过修饰胞外体的内容物尤其是ncRNA来反馈[22]。例如,TBI后胞外体内差异表达的miR-320c,miR-92a,lncRNA肺腺瘤转移相关转录本1基因(metastasis associated in lung denocarcinoma transcript 1,MALAT1)等可调节突触活动和神经可塑性[19, 23];此外,亦检测到泛素羧基末端水解酶、磷脂结合蛋白-VII等胞外体负载蛋白表达水平升高,它们参与了继发性脑损伤过程[24]。
1. TBI诊断与胞外体ncRNA
TBI的诊断和预后因其损伤类型、部位、严重程度、个体恢复能力等多种内在因素而复杂化,常规的诊断方法已凸显不足。胞外体组学在癌症研究领域已获得较大进展,表明了它们在液体活检中的重要作用[25-26]。胞外体组学分析也具有对TBI个体的差异性进行区分的潜力,但是目前尚未建立稳定可靠的评价标准和体系[27]。由于胞外体ncRNA不易被干扰和降解,可为疾病监测提供相对稳定、特异性的标志物[28]。因此,将这些标志物与实时临床参数相关联,能为我们提供描述TBI及其恢复等多个维度的临床信息,为改进分类、风险分层、疗效评估、预后预测、个性化甚至具有预见性的治疗策略提供了机会[28-29]。
胞外体miRNA性质稳定、易检测,是TBI理想的标志物。Harrison等[30]从TBI模型鼠的大脑中分离胞外体,进行miRNA测序。结果发现:miR-212的表达下调;miR-21,miR-146,miR-7a和miR-7b的表达显著上调,其中以miR-21的变化最为显著。Ko等[31]开发了基于胞外体miRNA表达谱进行TBI诊断的方法,并在大鼠模型和人类患者中制成了生物标志物面板。结果表明:7个miRNAs (miR-129-5p,miR-212-5p,miR-9-5p,miR-152-5p,miR-21,miR-374b-5p,miR-664-3p)能够识别健康对照组与TBI模型组,准确率达到99%。研究人员进一步对生物标志物面板进行开放式搜索,在鼠模型和临床样本中均绘制了胞外体miRNA在多种损伤类型、损伤强度、损伤史、损伤时间以及假手术对照中的图谱,成功地实现了对特定的损伤状态进行分类[32]。Ko等[32]进一步研究确定了胞外体中miRNA标志物与相关的信号通路,并发现许多通路在临床前模型和临床样本之间是共通的。Puffer等[33]分离TBI患者的血浆胞外体,通过深度测序发现了胞外体内11个差异表达的miRNA。这些miRNA的靶基因与机体损伤、发育的通路高度相关,进一步在人体中验证了胞外体miRNA是TBI的生物标志物。
胞外体circRNA参与TBI过程,同样具有一定的诊断意义。TBI后小鼠脑细胞外环境胞外体中circRNA的测序谱具有明显的差异表达,其中表达上调的有155个,下调的76个[34]。在控制性皮层撞击(controlled cortical impact,CCI)模型小鼠皮质circRNA的表达谱中检测到191种差异表达的circRNA。功能分析[18]表明炎症、细胞死亡和损伤修复是circRNA相关的主要生物学过程。
在神经肿瘤研究领域,胞外体lncRNA被认为是理想的诊断标志物,它们与肿瘤生成、浸润、转移及化学药物耐药相关,可用于早期诊断[15]。但目前胞外体lncRNA对TBI的诊断尚无研究报道。已经证实颅脑损伤会诱发体内一系列lncRNA表达水平的改变,如,Zhong等[35]研究发现CCI后小鼠皮层823个lncRNA的表达发生了明显的改变(667个上调,156个下调)。Wang等[36]分析TBI大鼠海马内lncRNA的表达,发现271个lncRNA呈现差异表达;功能分析表明炎症、转录、凋亡、坏死是改变最显著的生物学类别;相关通路主要涉及炎症、细胞周期和凋亡等。因此,胞外体内富集的lncRNA和circRNA[12]在TBI诊断性研究中的作用值得进一步探索。
2. TBI治疗与胞外体ncRNA
神经系统本身缺乏有效的先天自愈能力,创伤后神经的修复更是临床治疗的巨大难题。胞外体ncRNA在神经系统中显现了强大的修复和再生潜能[37]。已在动物实验中[22]证明胞外体治疗神经系统损伤的有效性,它们能通过促进血管生成、减轻炎症、神经再生等途径,促进神经功能的康复。间充质干细胞(mesenchymal stem cells,MSCs)移植疗法具有广泛的前景,其旁分泌活性在脑组织重建中起主导作用[38],其中MSCs来源的胞外体的作用已经得到验证[39]。有研究[39-40]从人类骨髓中分离MSCs胞外体,用于TBI后24 h的大鼠,发现可以显著抑制GFAP+星形胶质细胞和CD68+小胶质细胞/巨噬细胞的激活,从而发挥抗炎效应。MSCs来源的胞外体在TBI模型中的治疗作用表明:ncRNA在改变受体细胞的表型及调节生物过程中发挥关键作用[41]。作为一种无细胞疗法,基于ncRNA的胞外体治疗具有稳定性高、免疫原性低、穿过血脑屏障、靶向转移至特定细胞等优点,是探索TBI神经修复的新策略[8, 19]。
在体外实验中,用IL-3处理血管内皮细胞生成的胞外体,可以将miR-126-3p和pSTAT5投送到受体内皮细胞中,介导Spred-1表达降低、ERK1/2活化和cyclin D1转录增加,进而促进血管生成[42]。在Han等[43]的研究中,MSCs胞外体对大鼠的空间学习能力和运动功能均有显著的改善作用,组织学可观察到出血边界区新生内皮细胞、室下区成神经细胞、成熟神经元以及纹状体髓鞘的数量显著增加。Huang等[44]揭示了小胶质细胞胞外体miR-124-3p可转移到损伤神经元,抑制雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号的活性,促进轴突的生长,改善海马神经再生和神经功能恢复。其特征是神经突分支数量增加,总神经突长度增加,RhoA和神经退行性蛋白(如amyloid-β-peptide,p-Tau)表达减少,并抑制神经炎症,改善神经转归。
继发性TBI同样会严重影响患者神经功能预后。在TBI的诊治中,尽可能减少继发性TBI的相关影响因素,如神经炎症反应、神经元凋亡等,是科学研究和临床治疗的重点。在TBI后,星形胶质细胞和小胶质细胞释放炎症介质,介导神经炎症过程[41]。Yang等[45]研究发现:富集miR-124的骨髓MSC胞外体可促进小鼠海马神经发生,并通过抑制Toll样受体4(Toll-like receptor 4,TLR4)通路促进小胶质细胞的M2极化,进而抑制神经元炎症,改善预后。Xu等[46]在体内和体外实验中发现:在脑源性神经营养因子诱导下,MSCs来源的胞外体成功地抑制了炎症并促进神经元再生,其机制可能与miR-216a-5p的高表达有关。Long等[47]发现富集miR-873a-5p的胞外体能通过抑制NF-κB信号通路,调节小胶质细胞表型,减轻神经炎症,改善TBI后神经功能缺陷。Li等[48]研究证实:胞外体内miR-21-5p可抑制Rab11a介导的神经元自噬,削弱自噬介导的神经损伤。他们用TBI模型鼠大脑提取物处理HT-22神经元,模拟创伤后大脑微环境,观察HT-22的活化。结果发现miR-21-5p在HT-22的胞外体中表达增加,胞外体miR-21-5p通过直接靶向结合Rab11a 3'非编码区抑制自噬。此外,Li等[49]发现TBI后小胶质细胞来源的富集miR-124-3p的胞外体可以通过转移到神经元的方式,抑制神经元自噬并保护神经。
胞外体lncRNA和circRNA在TBI治疗中的作用也得到了证实。Patel等[23]研究发现:MALAT1可以调节包括炎症反应在内的多个治疗靶点,促进创伤后神经修复。相比于去除lncRNA MALAT1的胞外体和缺乏胞外体的条件培养基,含有MALAT1的人类脂肪源性干细胞(human adipose-derived stem cells,hASCs)胞外体可以显著改善CCI模型小鼠的运动功能并缓解皮质损伤。此外,hASC来源的胞外体lncRNA,如NEAT1和MALAT1等在促进内源性修复、改善运动和认知、缓解皮质和海马损伤中发挥了关键作用[50]。胞外体circRNA也在一定程度上参与TBI修复。研究[34]发现:在小鼠脑细胞外环境中,胞外体circRNA与神经元的生长和修复、神经系统的发育和信号转导有关。值得注意的是,胞外体ncRNA也广泛参与了TBI后病理生理过程,在作为干预靶点方面亦具有一定价值[18, 35]。综上所述,将胞外体ncRNA作为神经损伤潜在的治疗靶点具有临床应用潜力,为开发TBI新的治疗方法奠定了基础。
另有研究[51]提出给人工材料赋予胞外体的生物活性,如聚乳酸支架结合hASC来源的胞外体,可提高骨再生的效率,进而促进小鼠颅骨缺损的修复。一方面,胞外体负载的特定分子可以协助干细胞转移到目标损伤区域;另一方面,胞外体的低免疫原性能够减少治疗相关的一些不良反应。相关思路目前仍缺乏临床研究支持[52],但在颅骨修补、神经再生等领域具有强大的应用潜能。
3. TBI并发症与胞外体ncRNA
TBI并发症主要与创伤后身体应激反应及神经内分泌功能失调相关,会增加患者病死率、影响患者预后,因此必须有效控制相关并发症[53]。胞外体广泛参与TBI后的病情进展与细胞间的通讯网络,进而影响癫痫、骨质流失、肺损伤等并发症的发生[54-56]。胞外体ncRNA相关的基因调控可能长期影响并参与TBI后并发症的发生,相关研究[55-57]将给并发症的精准治疗提供理论基础。
TBI后胞外体介导破骨细胞分化,造成骨质流失,其中胞外体内miRNA参与了相关通路的激活。有研究[55]分离骨髓来源的胞外体miRNA,发现与假手术组相比,TBI组胞外体内miRNA-1224明显上调;提示TBI后胞外体miR-1224可能在NF-κB活化和骨髓破骨细胞分化中发挥关键作用。对这些信号通路的靶向抑制可能会逆转TBI诱导的骨质流失。但也有不同观点认为胞外体miRNA在成骨过程中发挥效应,对于骨折的修复有益[57]。此外,胞外体可以优化骨髓MSCs的成骨诱导作用,促进骨质再生[51]。笔者认为,胞外体ncRNA参与了创伤后骨质代谢的多个过程,其功能可表现出多样性,研究时需根据胞外体的来源、作用靶点等不同进行具体分析。
肺部疾患是影响神经重症患者预后的重要因素,约30%的TBI患者合并急性肺损伤(acute lung injury,ALI),而胞外体参与了TBI后ALI过程。TBI后血清胞外体蛋白可通过激活神经-呼吸炎性小体轴,促进肺微血管内皮细胞的焦亡,从而诱发ALI[54]。Jiang等[58]提取ALI小鼠的血液胞外体,发现特定的miRNA呈现富集化,可引起肺部炎症。该研究阐明了胞外体将miR-155递送至巨噬细胞,激活NF-κB通路,并诱导炎症介质,如肿瘤坏死因子-α、白细胞介素-6等产生的过程。此外,胞外体miR-155还可分别靶向含有SH2结构的肌醇磷酸酯酶-1和细胞激素信号抑制因子-1等,促进巨噬细胞的增殖和炎症反应。
TBI后癫痫是继发性TBI的重要危险因素,会严重影响脑功能的恢复。癫痫的发生涉及在系统水平上控制多个基因和蛋白质的miRNA,生物体液中的miRNA可能是癫痫生物标志物的新来源[59]。Yan等[60]研究发现:与健康对照组相比,颞叶中叶癫痫伴海马硬化患者血浆来源的胞外体内共有50 个miRNA差异表达,其中miR-8071的诊断价值最高,且能够反映出癫痫的严重程度。Karttunen等[56]综述了胞外体对结构性癫痫诊断和治疗的作用,认为胞外体miRNAs 可能是癫痫发作的关键调节因子。
4. 展 望
近年来,相关研究[61]揭示了胞外体ncRNA在细胞间通信网络中的新机制。胞外体来源的ncRNA对TBI后的诊断、治疗、并发症的防治等多个过程均具有重要意义。
未来的研究将主要围绕以下几个方面:1)对胞外体内ncRNA进行组学分析,开发评估TBI病情的非侵入性生物标志物。2)尝试确定促进疗效的特定胞外体ncRNA群,研究它们的作用方式、最佳剂量、治疗时间窗和给药途径等,以及探索ncRNA的人工修饰在胞外体治疗中的应用,开展个体化胞外体治疗。3)胞外体ncRNA在TBI并发症中的发生机制及精准诊疗。
总之,TBI领域的胞外体ncRNA研究已显现出丰富的思路。但在大规模地开展临床研究之前,需要对分离技术进行改进和完善,全面了解神经系统相关的胞外体生物学特征,以提高其在TBI领域应用中的灵敏性和特异性。
利益冲突声明
作者声称无任何利益冲突。
Funding Statement
湖南省自然科学基金(2018JJ2649)。
This work was supported by the Natural Science Foundation of Hunan Province, China (2018JJ2649).
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202102183.pdf
参考文献
- 1. Galgano M, Toshkezi G, Qiu X, et al. Traumatic brain injury: Current treatment strategies and future endeavors[J].Cell Transplant, 2017, 26(7): 1118-1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J].Curr Neuropharmacol, 2018, 16(8): 1224-1238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J].Lancet Neurol, 2019, 18(3): 286-295. [DOI] [PubMed] [Google Scholar]
- 4. Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities[J].Chin J Traumatol, 2018, 21(3): 137-151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies[J].J Neurooncol, 2013, 113(1): 1-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Margolis L, Sadovsky Y. The biology of extracellular vesicles: The known unknowns[J].PLoS Biol, 2019, 17(7): e3000363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Antes TJ, Middleton RC, Luther KM, et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display[J].J Nanobiotechnology, 2018, 16(1): 61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Osier N, Motamedi V, Edwards K, et al. Exosomes in acquired neurological disorders: new Insights into pathophysiology and treatment[J].Mol Neurobiol, 2018, 55(12): 9280-9293. [DOI] [PubMed] [Google Scholar]
- 9. Osaki M, Okada F. Exosomes and their role in cancer progression[J].Yonago Acta Med, 2019, 62(2): 182-190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Kim KM, Abdelmohsen K, Mustapic M, et al. RNA in extracellular vesicles[J].Wiley Interdiscip Rev RNA, 2017, 8(4): e1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Karnati HK, Garcia JH, Tweedie D, et al. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury[J].J Neurotrauma, 2019, 36(7): 975-987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Yang H, Fu H, Xu W, et al. Exosomal non-coding RNAs: a promising cancer biomarker[J].Clin Chem Lab Med, 2016, 54(12): 1871-1879. [DOI] [PubMed] [Google Scholar]
- 13. Yu X, Odenthal M, Fries JW. Exosomes as miRNA carriers: Formation-function-future[J].Int J Mol Sci, 2016, 17(12): 2028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Pan YB, Sun ZL, Feng DF. The role of microRNA in traumatic brain injury[J].Neuroscience, 2017, 367: 189-199. [DOI] [PubMed] [Google Scholar]
- 15. Fan Q, Yang L, Zhang X, et al. The emerging role of exosome-derived non-coding RNAs in cancer biology[J].Cancer Lett, 2018, 414: 107-115. [DOI] [PubMed] [Google Scholar]
- 16. Li Z, Han K, Zhang D, et al. The role of long noncoding RNA in traumatic brain injury[J].Neuropsychiatr Dis Treat, 2019, 15: 1671-1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Fanale D, Taverna S, Russo A, et al. Circular RNA in exosomes[J].Adv Exp Med Biol, 2018, 1087: 109-117. [DOI] [PubMed] [Google Scholar]
- 18. Jiang YJ, Cao SQ, Gao LB, et al. Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury[J].J Neurotrauma, 2019, 36(7): 1018-1028. [DOI] [PubMed] [Google Scholar]
- 19. Atif H, Hicks SD. A review of microRNA biomarkers in traumatic brain injury[J].J Exp Neurosci, 2019, 13: 1179069519832286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Li Y, Zhao J, Yu S, et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis[J].Clin Chem, 2019, 65(6): 798-808. [DOI] [PubMed] [Google Scholar]
- 21. Manek R, Moghieb A, Yang Z, et al. Protein biomarkers and neuroproteomics characterization of microvesicles/exosomes from human cerebrospinal fluid following traumatic brain injury[J].Mol Neurobiol, 2018, 55(7): 6112-6128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Xiong Y, Mahmood A, Chopp M. Emerging potential of exosomes for treatment of traumatic brain injury[J].Neural Regen Res, 2017, 12(1): 19-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Patel NA, Moss LD, Lee JY, et al. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury[J].J Neuroinflammation, 2018, 15(1): 204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Goetzl EJ, Elahi FM, Mustapic M, et al. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury[J].FASEB J, 2019, 33(4): 5082-5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Cui S, Cheng Z, Qin W, et al. Exosomes as a liquid biopsy for lung cancer[J].Lung Cancer, 2018, 116: 46-54. [DOI] [PubMed] [Google Scholar]
- 26. Shankar GM, Balaj L, Stott SL, et al. Liquid biopsy for brain tumors[J].Expert Rev Mol Diagn, 2017, 17(10): 943-947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Mondello S, Thelin EP, Shaw G, et al. Extracellular vesicles: pathogenetic, diagnostic and therapeutic value in traumatic brain injury[J].Expert Rev Proteomics, 2018, 15(5): 451-461. [DOI] [PubMed] [Google Scholar]
- 28. Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury[J].Philos Trans R Soc Lond B Biol Sci, 2014, 369(1652): 20130503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Goetzl L, Merabova N, Darbinian N, et al. Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury[J].Ann Clin Transl Neurol, 2018, 5(1): 4-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Harrison EB, Hochfelder CG, Lamberty BG, et al. Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation[J].FEBS Open Biol, 2016, 6(8): 835-846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Ko J, Hemphill M, Yang Z, et al. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles[J].Lab Chip, 2018, 18(23): 3617-3630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Ko J, Hemphill M, Yang Z, et al. Multi-dimensional mapping of brain-derived extracellular vesicle microRNA biomarker for traumatic brain injury diagnostics[J].J Neurotrauma, 2020, 37(22): 2424-2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Puffer RC, Cumba Garcia LM, Himes BT, et al. Plasma extracellular vesicles as a source of biomarkers in traumatic brain injury[J/OL]. J Neurosurg, 2020[2020-07-24]. 10.3171/2020.4.JNS20305. [DOI] [PubMed] [Google Scholar]
- 34. Zhao RT, Zhou J, Dong XL, et al. Circular ribonucleic acid expression alteration in exosomes from the brain extracellular space after traumatic brain injury in mice[J].J Neurotrauma, 2018, 35(17): 2056-2066. [DOI] [PubMed] [Google Scholar]
- 35. Zhong J, Jiang L, Cheng C, et al. Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury[J].Brain Res, 2016, 1646: 589-600. [DOI] [PubMed] [Google Scholar]
- 36. Wang CF, Zhao CC, Weng WJ, et al. Alteration in long non-coding RNA expression after traumatic brain injury in rats[J].J Neurotrauma, 2017, 34(13): 2100-2108. [DOI] [PubMed] [Google Scholar]
- 37. Rufino-Ramos D, Albuquerque PR, Carmona V, et al. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases[J].J Control Release, 2017, 262: 247-258. [DOI] [PubMed] [Google Scholar]
- 38. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury[J].Neurosci Lett, 2009, 456(3): 120-123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury[J].J Neurosurg, 2015, 122(4): 856-867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Zhang Y, Chopp M, Zhang ZG, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury[J].Neurochem Int, 2017, 111: 69-81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Yang Y, Ye Y, Su X, et al. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury[J].Front Cell Neurosci, 2017, 11: 55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Lombardo G, Dentelli P, Togliatto G, et al. Activated Stat5 trafficking via endothelial cell-derived extracellular vesicles controls IL-3 pro-angiogenicparacrine action[J].Sci Rep, 2016, 6: 25689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Han Y, Seyfried D, Meng Y, et al. Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat[J].J Neurosurg, 2018, 131(1): 290-300. [DOI] [PubMed] [Google Scholar]
- 44. Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons[J].FASEB J, 2018, 32(1): 512-528. [DOI] [PubMed] [Google Scholar]
- 45. Yang Y, Ye Y, Kong C, et al. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by Inhibiting TLR4 pathway[J].Neurochem Res, 2019, 44(4): 811-828. [DOI] [PubMed] [Google Scholar]
- 46. Xu H, Jia Z, Ma K, et al. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p[J].Med Sci Monit, 2020, 26: e920855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J].J Neuroinflammation, 2020, 17(1): 89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Li D, Huang S, Zhu J, et al. Exosomes from miR-21-5p-increased neurons play a role in neuroprotection by suppressing rab11a-mediated neuronal autophagy in vitro after traumatic brain injury[J].Med Sci Monit, 2019, 25: 1871-1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Li D, Huang S, Yin Z, et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury[J].Neurochem Res, 2019, 44(8): 1903-1923. [DOI] [PubMed] [Google Scholar]
- 50. Cooper DR, Borlongan C, Bickford PC, et al. Method of treating neurological disorders using long non-coding RNAs: 9.822.359[P]. 2017-11-21.
- 51. Li W, Liu Y, Zhang P, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J].ACS Appl Mater Interfaces, 2018, 10(6): 5240-5254. [DOI] [PubMed] [Google Scholar]
- 52. Yuan J, Botchway BOA, Zhang Y, et al. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury[J].Stem Cell Rev Rep, 2020, 16(2): 323-334. [DOI] [PubMed] [Google Scholar]
- 53. Lim HB, Smith M. Systemic complications after head injury: a clinical review[J].Anaesthesia, 2007, 62(5): 474-482. [DOI] [PubMed] [Google Scholar]
- 54. Kerr NA, de Rivero Vaccari JP, Umland O, et al. Human lung cell pyroptosis following traumatic brain injury[J].Cells, 2019, 8(1): 69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Singleton Q, Vaibhav K, Braun M, et al. Bone marrow derived extracellular vesicles activate osteoclast differentiation in traumatic brain injury induced bone loss[J].Cells, 2019, 8(1): 63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Karttunen J, Heiskanen M, Lipponen A, et al. Extracellular vesicles as diagnostics and therapeutics for structural epilepsies[J].Int J Mol Sci, 2019, 20(6): 1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Lu Z, Chen Y, Dunstan C, et al. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration[J].Tissue Eng Part A, 2017, 23(21/22): 1212-1220. [DOI] [PubMed] [Google Scholar]
- 58. Jiang K, Yang J, Guo S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J].Mol Ther, 2019, 27(10): 1758-1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Reschke CR, Henshall DC. MicroRNA and epilepsy[J].Adv Exp Med Biol, 2015, 888: 41-70. [DOI] [PubMed] [Google Scholar]
- 60. Yan S, Zhang H, Xie W, et al. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis[J].Oncotarget, 2017, 8(3): 4136-4146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Sun Z, Yang S, Zhou Q, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment[J].Mol Cancer, 2018, 17(1): 82. [DOI] [PMC free article] [PubMed] [Google Scholar]
