Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2021 Feb 28;46(2):142–148. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2021.190722

老年髋部骨折后静脉血栓栓塞症风险预测模型的构建及预测效能

Construction and efficiency analysis of prediction model for venous thromboembolism risk in the elderly after hip fracture

PENG Jiangnan 1,2, WANG Haochen 1, ZHANG Liang 1, LIN Zhangyuan 1,
Editor: 彭 敏宁
PMCID: PMC10929787  PMID: 33678650

Abstract

Objective

To screen the risk factors for predicting venous thromboembolism (VTE) risk after hip fracture in the elderly, to establish a prediction model based on these factors, and to analyze its prediction efficacy.

Methods

A total of 52 hip fracture patients over 60 years old with VTE admitted to the Department of Orthopaedic Trauma, Xiangya Hospital, Central South University from March 2017 to April 2019 were selected as a thrombus group, and another 52 hip fracture patients over 60 years old without VTE were selected as a control group. The differences of hospitalization data and examination results between the 2 groups were compared. Logistic regression model was used to explore the influence of risk factors on VTE risk after hip fracture in the elderly and construct the prediction model based on these factors. The receiver operating characteristic curve was used to analyze the predictive effectiveness of model, Hosmer-lemeshow goodness of fit test was used to evaluate the fitting degree of prediction model.

Results

Univariate analysis showed that injury-admission interval, Caprini score, WBC count, platelet count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, systemic immune-inflammatory index (SII), and fibrinogen in the thrombus group were higher than those in the control group (all P<0.05). Logistic regression analysis showed that injury-admission interval, Caprini score, and SII were independent predictors of VTE risk after hip fracture in the elderly. The AUC was 0.949 (95% CI 0.901 to 0.996) when the sensitivity and specificity were 82.70% and 96.20%, respectively, which were significantly higher than each single index, and the prediction model had perfect fitting degree (Hosmer-lemeshow χ 2=14.078, P>0.05).

Conclusion

SII, Caprini score, and injury-admission interval are independent predictors of VTE after hip fracture in the elderly. The prediction model based on these 3 factors has a good efficacy on the prediction of VTE risk, and could provide important reference for the prevention, management, and treatment of VTE after hip fracture in the elderly.

Keywords: systemic immune-inflammatory index, venous thromboembolism, hip fracture, prediction model


静脉血栓栓塞症(venous thromboembolism,VTE)包括深静脉血栓(deep venous thrombosis,DVT)和继发性肺栓塞(pulmonary embolism,PE),不仅是老年髋部骨折后的主要并发症之一,也是住院期间出现VTE相关并发症,甚至死亡的常见原因[1]。对老年髋部骨折患者这一高危人群发生VTE的风险进行有效的早期识别和针对性预防可显著减少VTE发生率、病死率和病残率,但亟需一种方便、快速、可靠的预测评估工具。目前证据[2-3]表明炎症免疫与VTE密切相关。炎症免疫反应可激活凝血系统,降低体内抗凝物质的活性,扰乱纤溶系统功能,从而导致血栓形成[4]。系统免疫炎症指数(systemic immune-inflammatory index,SII)是新兴、稳定且易获取的炎症免疫血清学标志物[5-6],本研究拟探讨SII是否可作为老年髋部骨折后VTE风险的预测因素,并以此为基础,构建联合预测模型,为老年髋部骨折后VTE的早期监测、预防、治疗提供理论依据。

1. 对象与方法

1.1. 对象

选取2017年3月至2019年4月中南大学湘雅医院创伤骨科收治的52名髋部骨折合并VTE的患者作为血栓组,并选取同期52名髋部骨折未合并VTE的患者作为对照组。纳入标准:年龄≥60岁;髋部骨折;创伤因素为轻度暴力(如摔倒、身体扭转、负重起身等)。排除标准:有多发性骨折、恶性肿瘤、病理性骨折(如恶性肿瘤引起的骨折或代谢性骨病)、风湿性或炎症性疾病、慢性肝肾疾病、入院前外科手术史、抗磷脂抗体综合征、不明原因的感染性疾病、近期抗生素使用史等。

1.2. 方法

记录两组患者住院资料,如性别,年龄,骨折情况(骨折类型、骨折部位、创伤因素、受伤-入院间隔时间),既往史,日常生活能力评分,Caprini血栓风险评估量表(2009年修订版)评分等。两组均进行外周血全血细胞计数(complete blood count,CBC)和凝血功能、C反应蛋白(C-reactive protein,CRP)、红细胞沉降率(erythrocyte sedimentation rate,ESR)检测,以及下肢深静脉彩超检查(双下肢任一部位出现静脉血栓即为阳性)。CBC包括白细胞(white blood cell,WBC)计数、血小板(platelet,PLT)计数、中性粒细胞计数(neutrophil count,NC)、单核细胞计数(monocyte count,MC)、淋巴细胞计数(lymphocyte count,LC)、平均血小板体积(mean platelet volume,MPV)和红细胞体积分布宽度(red blood cell volume distribution width,RDW)。按以下公式计算全身SII、中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR),其中SII=PLT×NC/LC,NLR=NC/LC,PLR=PLT/LC,MLR=MC/LC。凝血功能包括活化部分凝血活酶时间(activated partial thromboplastin time,APTT)、凝血酶原时间(prothrombin time,PT)、凝血酶时间(thrombin time,TT)、纤维蛋白原(fibrinogen,FIB)水平、D-二聚体水平等。

1.3. 统计学处理

采用SPSS 21.0统计软件分析数据。计量资料中符合正态分布的数据以均数±标准差( x¯ ±s)表示,2组比较采用t检验;符合偏态分布的数据以中位数(范围)[M(范围)]表示,2组比较采用Mann-Whitney U检验。计数资料以例数(百分比)表示,2组比较采用Pearson χ2检验或连续性校正的χ2检验。多因素分析采用logistic回归模型,筛选有意义的因素构建老年髋部骨折后VTE风险预测模型,应用受试者工作特征(receiver operating characteristic,ROC)曲线分析模型的预测效能,Hosmer-Lemeshow拟合优度检验评价预测模型的拟合程度。P<0.05为差异有统计学意义。

2. 结 果

2.1. 基本情况

共纳入104名患者,其中男46名(44.2%),女58名(55.8%)。血栓组与对照组的受伤-入院间隔时间、Caprini评分差异均有统计学意义(均P<0.05),其余变量差异均无统计学意义(均P>0.05,表1)。

表1.

血栓组与对照组基本情况比较

Table 1 Comparison of the basic situation between the thrombosis group and the control group

组别 n 性别/[例(%)] 年龄/岁 受伤-入院间隔时间/h
对照组 52 24(46.2) 28(53.8) 74.31±8.44 6.60±4.42
血栓组 52 22(42.3) 30(57.7) 75.67±8.48 10.42±8.38
t2 0.156 -0.823 -2.914
P 0.693 0.413 <0.001
组别 创伤因素/[例(%)] 吸烟、饮酒史/[例(%)] 糖尿病/[例(%)]
摔倒 其他
对照组 44(84.6) 8(15.4) 11(21.2) 41(78.8) 5(9.6) 47(90.4)
血栓组 47(90.4) 5(9.6) 20(38.5) 32(61.5) 12(23.1) 40(76.9)
t2 0.791 3.722 3.446
P 0.374 0.054 0.063
组别 VTE病史及家族史/[例(%)] 心脑血管疾病/[例(%)] 日常生活能力评分 Caprini评分
对照组 1(2.0) 51(98.0) 21(40.4) 31(59.6) 35.67±11.59 7.77±1.25
血栓组 5(9.6) 47(90.4) 25(48.1) 27(51.9) 34.23±12.85 9.63±2.12
t2 1.592 0.624 0.601 -5.670
P 0.207 0.430 0.072 0.040
组别 骨折类型/[例(%)] 骨折部位/[例(%)]
股骨颈骨折 股骨粗隆间骨折 股骨粗隆下骨折 左侧 右侧 双侧
对照组 33(63.5) 18(34.6) 1(2.0) 29(55.8) 23(44.2) 0(0)
血栓组 31(59.6) 21(40.4) 0(0) 32(61.5) 19(36.5) 1(2.0)
t2 0.163 0.357
P 0.687 0.550

2.2. 外周血清学指标比较

血栓组患者WBC计数、PLT计数、NC、NLR、PLR、MLR、FIB水平均高于对照组,差异均有统计学意义(均 P<0.05),而SII显著高于对照组(P<0.001),其余变量差异均无统计学意义(均P>0.05,表2)。

表2.

血栓组与对照组外周血清学指标比较(n=52)

Table 2 Comparison of serum indicators of peripheral blood between the thrombosis group and the control group (n=52)

组别 WBC/(×109·L-1) PLT/(×109·L-1) NC/(×109·L-1) LC/(×109·L-1) MC/(×109·L-1) MPV/fL
P 0.022 0.020 0.009 0.411 0.123 0.116
对照组 6.83±1.67 159.17(126.50~186.75) 4.73(3.80~5.48) 1.34(0.93~1.60) 0.60(0.43~0.78) 9.53(8.86~10.05)
血栓组 7.73±2.26 205.58(136.50~247.75) 5.82(3.80~7.30) 1.20(0.80~1.58) 0.60(0.50~0.88) 9.08(8.48~10.08)
组别 RDW/fL NLR PLR MLR SII CRP/(mg·L-1)
对照组 13.40(12.93~14.13) 3.94(2.92~5.09) 132.18(88.59~165.19) 0.50(0.36~0.62) 589.04(441.50~748.02) 49.36(20.63~56.28)
血栓组 13.60(13.13~14.95) 6.51(3.24~6.93) 220.71(107.53~227.02) 0.71(0.38~0.88) 1 523.38(637.67~1 622.65) 63.21(19.03~77.90)
P 0.058 0.046 0.005 0.038 <0.001 0.609
组别 ESR/(mm·h-1) APTT/s PT/s TT/s FIB/(g·L-1) D-二聚体/(mg·L-1)
对照组 59.00(45.50~62.35) 33.51±3.72 13.80(13.13~14.58) 17.37(16.23~18.28) 4.01±1.00 1.55(0.99~2.95)
血栓组 65.70(42.75~85.00) 33.94±4.44 14.00(13.13~14.68) 16.65(15.76~18.27) 4.49±1.34 1.69(0.66~3.47)
P 0.305 0.588 0.558 0.158 0.039 0.552

WBC:白细胞;PLT:血小板;NC:中性粒细胞计数;LC:淋巴细胞计数;MC:单核细胞计数;MPV:平均血小板体积;RDW:红细胞体积分布宽度;NLR:中性粒细胞与淋巴细胞比值;PLR:血小板与淋巴细胞比值;MLR:单核细胞与淋巴细胞比值;SII:系统免疫炎症指数;CRP:C反应蛋白;ESR:红细胞沉降率;APTT:活化部分凝血活酶时间;PT:凝血酶原时间;TT:凝血酶时间;FIB:纤维蛋白原。

2.3. 老年髋部骨折后VTE预测因素及预测效能分析

将单因素分析中对老年髋部骨折发生VTE有影响的因素(受伤-入院间隔时间、Caprini评分、WBC、PLT、NC、NLR、PLR、MLR、SII、FIB)代入多因素logistic回归模型,结果显示受伤-入院间隔时间、Caprini评分、SII是老年髋部骨折后发生VTE的独立预测因素(均P<0.05,表3)。受伤-入院间隔时间、Caprini评分、SII的预测效能、灵敏度、特异度如表4所示。

表 3.

老年髋部骨折后VTE风险的多因素logistic回归分析结果

Table 3 Results of multivariate logistic regression analysis for VTE risk after hip fracture in the elderly

项目 β SE Wald χ2 P OR 95% CI
受伤-入院间隔时间 0.223 0.084 7.023 0.026 1.250 1.060~1.474
Caprini评分 1.060 0.281 14.187 0.012 2.886 1.663~5.011
WBC 0.110 0.400 0.076 0.058 1.116 0.510~2.444
PLT 0.029 0.018 2.685 0.067 1.029 0.994~1.065
NC -0.460 0.586 0.616 0.055 0.631 0.200~1.990
NLR 0.695 0.469 2.192 0.078 2.003 0.798~5.026
PLR -0.020 0.022 0.847 0.051 0.980 0.939~1.023
MLR -0.519 2.483 0.044 0.062 0.595 0.005~77.381
SII 0.004 0.002 4.763 0.001 1.004 1.001~1.008
FIB -0.331 0.362 0.837 0.066 0.718 0.354~1.459

WBC:白细胞;PLT:血小板;NC:中性粒细胞计数;NLR:中性粒细胞与淋巴细胞比值;PLR:血小板与淋巴细胞比值;MLR:单核细胞与淋巴细胞比值;SII:系统免疫炎症指数;FIB:纤维蛋白原。

表4.

不同预测因素对老年髋部骨折后VTE的预测效能比较

Table 4 Comparison of the efficacy of different variables in predicting VTE after hip fracture in the elderly

预测因素 AUC(95% CI) 截断值 灵敏度/% 特异度/% P
受伤-入院间隔时间 0.687(0.583~0.790) 12.50 h 61.50 63.50 0.001
Caprini评分 0.879(0.809~0.948) 8.50 78.80 86.50 <0.001
SII 0.795(0.710~0.880) 847.78 53.80 92.30 <0.001

SII:系统免疫炎症指数;AUC:曲线下面积。

2.4. 老年髋部骨折后VTE预测模型的构建

在logistic回归分析界面,根据前述分析结果,将受伤-入院间隔时间、Caprini评分、SII选入“Covariates”选项,再将VTE选入“Dependent”选项,运行程序后即可完成预测模型的建立,并可自动生成该模型下的预测值PRE_1。通过分析新变量PRE_1,绘制出该模型下的ROC曲线(图1),可知其曲线下面积(area under curve,AUC)为0.949(95% CI:0.901~0.996),截断值为0.697,对应的灵敏度和特异度分别为82.70%和96.2%。由此可见,该模型的预测效能、灵敏度、特异度均明显优于各单一指标。如图2所示,预测模型的Hosmer-Lemeshow拟合优度检验结果显示模型预测值与实际观测值之间差异无统计学意义(Hosmer-Lemeshow χ2=14.078,P=0.080),提示该预测模型的拟合程度好。

图1.

图1

老年髋部骨折后VTE预测模型的ROC曲线

Figure 1 ROC curve of prediction model for VTE after hip fracture in the elderly

图2.

图2

老年髋部骨折后VTE预测模型的拟合优度曲线

Figure 2 Goodness of fit curve of predictive model for VTE after hip fracture in the elderly

3. 讨 论

VTE是骨科大手术住院患者的常见并发症之一[7]。由于VTE起病隐匿,临床症状及体征个体差异大,漏诊、误诊率较高,常被称为“沉寂”的“杀手”。尽管可根据特定的临床指标预测VTE,但单一指标的预测效能具有一定的局限性。例如,D-二聚体诊断灵敏度较高,但特异度低,外伤、手术、心肌梗死、恶性肿瘤、炎症时均可升高[8]。而本研究并未发现D-二聚体水平在血栓组与对照组之间差异有统计学意义,或许与骨折创伤本身、创伤激惹炎症免疫反应等因素有关,以致血栓组与对照组D-二聚体水平均升高。血流瘀滞、血管损伤、血液高凝状态是VTE形成的三要素[9],首先,髋部骨折本身是VTE的高危因素;其次患者骨折后长久制动,可导致肌肉血管泵功能下降,加上多为老年人群,其血管壁弹性降低,导致静脉血流减慢;最后,骨折本身也会损伤血管内膜,释放炎症介质,形成炎症连锁反应,直接或间接促进高凝状态形成。因此,本研究试图通过建立一个包含多项预测因素的联合预测模型,综合各预测因素的优势,以达到对老年髋部骨折后VTE的精准预测。

在创伤骨科领域,医生一直以来非常强调老年髋部骨折的早期治疗,于是制订了“老年髋部骨折48 h绿色通道”原则,尽可能快地保证患者在院内“无延迟通过”,这也符合目前国际上倡导的“快速康复”理念。以往对髋部骨折相关VTE的研究多集中于围手术期,对受伤至入院这段时间VTE的发生情况报道较少。事实上,在院前阶段,患者发生髋部骨折后因无法及时接受VTE相关护理及预防措施,不良事件发生风险明显增加。研究[10]报道延迟住院时间是髋部骨折的高危因素。在无任何预防措施的情况下,髋部骨折发生DVT的风险可增至40%~60%[11]。本研究发现血栓组受伤-入院间隔时间明显长于对照组,提示受伤-入院间隔时间延长与VTE的发生风险增加相关;同时受伤-入院间隔时间可作为预测老年髋部骨折后发生VTE的独立预测因素,但其预测效能、灵敏度、特异度均不如Caprini评分(0.687 vs 0.879,61.50% vs 78.80%,63.50% vs 86.50%)。

Caprini血栓风险评估量表[12-13]是目前临床上一个有效且简单可行、经济实用的VTE风险预测工具,包含了大约40个不同的危险因素,基本涵盖了住院患者可能发生VTE的所有危险因素,每个危险因素根据危险程度赋予1~5分,最后根据总分将患者的VTE发生风险分为低危(0~1分)、中危(2分)、高危(3~4分)和极高危(≥5分)4个等级,不同的风险等级推荐不同的VTE预防措施。国内外研究[14-15]已经证实了该量表的有效性和可行性,并且得到国内外指南推荐。本研究使用该量表评估所有患者VTE风险,结果显示髋部骨折患者均为极高危人群(≥5分),并且血栓组Caprini评分明显高于对照组,提示患者尤其是老年人群出现髋部骨折后,要警惕VTE不良事件的发生,且较高的Caprini评分与VTE事件的发生风险增加相关;此外,Caprini评分可作为老年髋部骨折后VTE的独立预测因素,且Caprini评分的预测效能、灵敏度、特异度较高。然而,Caprini评分的预测效能和灵敏度虽高于SII(分别0.879 vs 0.795,78.80% vs 53.80%),但特异度却不如SII(86.50% vs 92.3%)。

近年来,全身SII被广泛用于反映全身炎症免疫状态、判断预后及风险分层。对比同类型指标,如NLR、PLR和MLR仅分别整合了两种类型的细胞(淋巴细胞、中性粒细胞或单核细胞),SII的优势在于整合了3种类型细胞(淋巴细胞、中性粒细胞、PLT),它反映了机体炎症、免疫和凝血三者的平衡,且在预测生存结局或预后方面,比NLR、PLR、MLR更有优势[16-17]。过去人们认为炎症免疫反应和血栓形成是两个独立的病理生理过程,然而随着研究的深入,人们发现炎症免疫反应和血栓形成在分子成分和信号通路上其实是部分交联且互相影响的,这在一定程度上从侧面论证了炎症免疫反应和VTE之间的联系,也为探讨SII与老年髋部骨折后VTE风险的关系提供了理论依据。

炎症免疫反应和VTE之间的关系纷繁复杂,具体而言,炎症可激活转录因子(包括NF-κB)和细胞内酶(包括半胱氨酸蛋白酶家族蛋白酶),随后分泌各种炎症介质,包括细胞因子、趋化因子和生长因子。这些介质激活内皮细胞、WBC和PLT,诱导其表面相关细胞黏附分子的表达,然后通过刺激单核细胞产生组织因子(TF)来诱导凝血。因子VII与TF的接触是凝血激活的主要触发因素。内皮细胞、WBC和PLT之间发生复杂的相互作用,导致内皮损伤和内皮细胞功能障碍,这是炎症和血栓形成之间的重要联系之一[18-21]。肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、IL-8、单核细胞趋化蛋白-1(MCP-1)也可能参与了静脉血栓形成的发病机制[22-25]。发生骨折时,FIB作为创伤后典型的急性期炎症蛋白,是止血和凝血的核心成分之一,反映了高凝性和高纤溶性。凝血酶-纤维蛋白(原)轴被认为是介导炎症细胞活性的关键途径,炎症中下游凝血因子和纤溶因子起关键作用[26-27];此外,PLT的活化在炎症诱导的血栓形成的病理生理过程中也起重要作用[28]。因此在骨折后几小时内,骨折导致的炎症免疫反应常常可形成血栓前环境。本研究发现:血栓组WBC、NC、NLR、PLR、MLR、SII等炎症免疫指标,均显著高于对照组,且PLT、FIB等凝血指标也相应升高,尽管WBC、PLT、NC、NLR、PLR、MLR、FIB与老年髋部骨折后VTE相关,但它们并不能准确预测老年髋部骨折后发生VTE的风险,而SII可作为独立预测因素预测老年髋部骨折后VTE风险,其预测效能、特异度均较高,但灵敏度较差。

SII、Caprini评分、受伤-入院间隔时间这3个预测因素各有优缺点,但基于这3个指标建立的预测模型的预测效能、灵敏度、特异度均明显优于各单一指标,且Hosmer-Lemeshow拟合优度检验显示理论预测值与实际观测值之间差异无统计学意义,说明预测模型对数据的拟合程度好。综上所述,基于SII、Caprini评分、受伤-入院间隔时间3个指标构建的预测模型对VTE风险预测有重要意义,且具有良好的效能,可为临床上指导老年髋部骨折后VTE的预防、管理和治疗提供重要参考。

利益冲突声明

作者声称无任何利益冲突。

Funding Statement

湖南省自然科学基金(2018JJ2650)。

This work was supported by the Natural Science Foundation of Hunan Province, China (2018JJ2650).

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202102142.pdf

参考文献

  • 1. McLaughlin MA, Orosz GM, Magaziner J, et al. Preoperative status and risk of complications in patients with hip fracture[J].J Gen Intern Med, 2006, 21(3): 219-225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Budnik I, Brill A. Immune factors in deep vein thrombosis initiation[J].Trends Immunol, 2018, 39(8): 610-623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Branchford BR, Carpenter SL. The role of inflammation in venous thromboembolism[J].Front Pediatr, 2018, 6: 142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Esmon CT. Crosstalk between inflammation and thrombosis[J].Maturitas, 2008, 61(1/2): 122-131. [DOI] [PubMed] [Google Scholar]
  • 5. Geng YT, Shao YJ, Zhu DX, et al. Systemic immune-inflammation index predicts prognosis of patients with esophageal squamous cell carcinoma: A propensity score-matched analysis[J].Sci Rep, 2016, 6: 39482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Jan HC, Ou CH. ASO author reflections: Significant impact of the preoperative systemic immune-inflammation index and monocyte-lymphocyte ratio on survival outcomes in patients with upper tract urothelial carcinoma[J].Ann Surg Oncol, 2019, 26(Suppl 3): 563-564. [DOI] [PubMed] [Google Scholar]
  • 7. Heit JA. Epidemiology of venous thromboembolism[J].Nat Rev Cardiol, 2015, 12(8): 464-474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Righini M, Robert-Ebadi H, Le GG. Diagnosis of pulmonary embolism[J].Press Medicale, 2015, 44(12): e385-e391. [DOI] [PubMed] [Google Scholar]
  • 9. Wolberg AS, Aleman MM, Leiderman K, et al. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited[J].Anesth Analg, 2012, 114(2): 275-285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Shin WC, Woo SH, Lee SJ, et al. Preoperative prevalence of and risk factors for venous thromboembolism in patients with a hip fracture: An indirect multidetector CT venography study[J].J Bone Joint Surg Am, 2016, 98(24): 2089-2095. [DOI] [PubMed] [Google Scholar]
  • 11. Radcliff TA, Henderson WG, Stoner TJ, et al. Patient risk factors, operative care, and outcomes among older community-dwelling male veterans with hip fracture[J].J Bone Joint Surg Am, 2008, 90(1): 34-42. [DOI] [PubMed] [Google Scholar]
  • 12. Caprini JA. Thrombosis risk assessment as a guide to quality patient care[J].Dis Mon, 2005, 51(2/3): 70-78. [DOI] [PubMed] [Google Scholar]
  • 13. Caprini JA. Risk assessment as a guide to thrombosis prophylaxis[J].Curr Opin Pulm Med, 2010, 16(5): 448-452. [DOI] [PubMed] [Google Scholar]
  • 14. Gould MK, Garcia DA, Wren SM, et al. Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines[J].Chest, 2012, 141(2 Suppl): e227S-e277S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. 中华医学会骨科学分会 . 中国骨科大手术静脉血栓栓塞症预防指南[J].中华骨科杂志, 2016, 36(2): 65-71. [Google Scholar]; Orthopedics Branch of Chinese Medical Association . Guidelines of prevention of venous thromboembolism after major orthopaedic surgery in China[J].Chinese Journal of Orthopaedics, 2016, 36(2): 65-71. [Google Scholar]
  • 16. Guo W, Cai SH, Zhang F, et al. Systemic immune-inflammation index (SII) is useful to predict survival outcomes in patients with surgically resected non-small cell lung cancer[J].Thorac Cancer, 2019, 10(4): 761-768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Fu HY, Zheng J, Cai JY, et al. Systemic immune-inflammation index (SII) is useful to predict survival outcomes in patients after liver transplantation for hepatocellular carcinoma within Hangzhou criteria[J].Cell Physiol Biochem, 2018, 47(1): 293-301. [DOI] [PubMed] [Google Scholar]
  • 18. Poredos P, Jezovnik MK. The role of inflammation in venous thromboembolism and the link between arterial and venous thrombosis[J].Int Angiol, 2007, 26(4): 306-311. [PubMed] [Google Scholar]
  • 19. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis[J].J Clin Invest, 2005, 115(12): 3378-3384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution[J].Arterioscler Thromb Vasc Biol, 2008, 28(3): 387-391. [DOI] [PubMed] [Google Scholar]
  • 21. Nurden AT. Platelets, inflammation and tissue regeneration[J].Thromb Haemost, 2011, 105(Suppl 1): S13-S33. [DOI] [PubMed] [Google Scholar]
  • 22. Mahemuti A, Abudureheman K, Aihemaiti X, et al. Association of interleukin-6 and C-reactive protein genetic polymorphisms levels with venous thromboembolism[J].Chin Med J (Engl), 2012, 125(22): 3997-4002. [PubMed] [Google Scholar]
  • 23. Matos MF, Lourenço DM, Orikaza CM, et al. The role of IL-6, IL-8 and MCP-1 and their promoter polymorphisms IL-6-174GC, IL-8 -251AT and MCP-1-2518AG in the risk of venous thromboembolism: a case-control study[J].Thromb Res, 2011, 128(3): 216-220. [DOI] [PubMed] [Google Scholar]
  • 24. Zapponi Kiara CS, Mazetto BM, Bittar LF, et al. Increased adhesive properties of neutrophils and inflammatory markers in venous thromboembolism patients with residual vein occlusion and high D-dimer levels[J].Thromb Res, 2014, 133(5): 736-742. [DOI] [PubMed] [Google Scholar]
  • 25. Lee KG, Lee H, Ha JM, et al. Increased human tumor necrosis factor-α levels induce procoagulant change in porcine endothelial cells in vitro[J].Xenotransplantation, 2012, 19(3): 186-195. [DOI] [PubMed] [Google Scholar]
  • 26. Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation[J].Blood, 2019, 133(6): 511-520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Szaba FM, Smiley ST. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo[J].Blood, 2002, 99(3): 1053-1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Shi GF, Morrell CN. Platelets as initiators and mediators of inflammation at the vessel wall[J].Thromb Res, 2011, 127(5): 387-390. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES