Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2023 Sep 28;48(9):1304–1315. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2023.230067

载Apelin-13缓释微囊的新型生物支架促兔输卵管再通的初步研究

Preliminary study on a novel biological scaffold loaded with Apelin-13 sustained-release microcapsules for promoting fallopian tube recanalization in rabbits

ZHAO Qun 1,2, XUE Min 2, LI Yuyan 3, ZHENG Yifan 4, XU Zhewei 4, LI Zhiyue 4,
Editor: 郭 征
PMCID: PMC10929861  PMID: 38044641

Abstract

Objective

Tubal factor infertility severely impairs the natural fertility of women, and there is for genuine tubal recanalization, including restoration of both the anatomy and function of the diseased fallopian tubes. Currently, there is no effective treatment available. This study aims to explore methods for promoting the repair and recanalization of fallopian tubes from these 2 aspects.

Methods

Apelin-13 sustained-release microspheres and poly (lactic-co-glycolic acid) (PLGA) three-dimensional (3D) biodegradable scaffolds were prepared. The basic characteristics and in vivo degradation (mass loss rate) of the biodegradable scaffolds were tested, along with the in vitro drug release (cumulative release rate), the in vivo drug release (Apelin-13 plasma concentration), and in vitro degradation (degradation rate) of the microspheres. The Apelin-13 microspheres (microsphere group)/PLGA 3D scaffolds loaded with Apelin-13 sustained-release microspheres (scaffold-microcapsule group) were injected/placed into the fallopian tubes of New Zealand rabbit of chronic salpingitis models. The patency, microscopic structure, and positive expression of estrogen receptor and progesterone receptor of the fallopian tubes in the control group, the model group, the microcapsule group, and the scaffold-microcapsule group was observed and compared.

Results

At the 4th week post-operation, the mass loss rate of the PLGA 3D scaffolds, the degradation rate of the microspheres, and the Apelin-13 sustained-release microspheres-generated cumulative release rate in vitro over 30 days were 98.66%, 70.58%, and 98.68% respectively. The plasma concentration of Apelin-13 reached its peak within 5 days and remained stable for 25 days. Compared with the model and microsphere groups, the scaffold-microsphere group showed a milder inflammatory reaction within the tubal lumen, a higher rate of fallopian tube patency, and higher expression levels of estrogen and progesterone receptors (all P<0.05). The indicators of the scaffold-microsphere group were close to those of the control group.

Conclusion

The PLGA 3D scaffolds loaded with Apelin-13 sustained-release microspheres can comprehensively repair the anatomical structure and physiological function of the fallopian tubes and hold promise for truly effective tubal recanalization.

Keywords: fallopian tube recanalization, poly (lactic-co-glycolic acid), Apelin-13, three-dimensional biodegradable scaffold, sustained-release microspheres


输卵管病变严重危害女性的生育功能,主要表现为输卵管梗阻和功能异常,25%~49%的女性不孕症患者存在输卵管病变,且呈逐年上升的趋势[1-3]。目前,针对输卵管病变造成的不孕有输卵管再通治疗和体外受精-胚胎移植(in vitro fertilization-embryo transfer,IVF-ET)2种治疗方式。尽管近年来IVF-ET发展迅速,但由于技术复杂,费用昂贵,成功率低,并发症发生率高,加上胚胎体外培养可能导致遗传修饰错误,远期影响仍然未知,此外还涉及计划生育政策、社会伦理学等问题,限制了其广泛应用。因此,修复损伤输卵管,让卵子和精子在自然状态下结合并生长发育,无疑是治疗输卵管性不孕最理想的方式[4-5]。约50%的输卵管插管疏通术后未妊娠者为输卵管再阻塞[6]。输卵管修复再通治疗实际是输卵管解剖及功能的恢复过程,而管腔粘连分离后再次粘连和管腔黏膜功能恢复困难是目前严重影响治疗效果的2个主要因素。本研究从这两个方面探讨促进输卵管修复再通的方法。目前,国内外尚无此类研究。

组织工程是近年来科学研究的热点之一,主要是应用细胞生物学和工程学的原理,研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态的生物替代物的一门新兴学科[7]。聚乳酸-羟基乙酸共聚物[poly (lactic-co-glycolic acid),PLGA]是聚乳酸(polylactic acid,PLA)和羟基乙酸(polyglycolic acid,PGA)的不同比例共聚物的总称,具有良好的组织相容性和生物降解速率可控性。PLGA在人体内代谢产生乳酸和乙醇酸,最终降解为CO2和H2O,排出体外。PLGA及其代谢产物无毒、无刺激,不在体内长期蓄积,对人体组织的影响很小,已经被美国食品药品监督管理局(Food and Drug Administration,FDA)批准用于临床[8]。另外,PLGA的生物降解速率可控,不同的PLA与PGA比例的PLGA的生物降解速率不同,这一特性有利于获得满足临床实际需要的最佳生物材料[9-10]。已研发成功并获得美国FDA批准用于临床的有PLGA人工神经导管、PLGA人工血管等[11-12]。目前,国内国外尚无PLGA材料用于输卵管修复的研究。

PLGA也常用作控制药物释放体系的载体,其优点是在病变范围内可长期维持有效的局部药物浓度,避免过高药物浓度和重复给药所致的不良反应,已成为药剂学药物缓释系统的重要研究方向[13]。Apelin是G蛋白偶联受体(G protein-coupled receptor,APJ)的天然配体,广泛存在于哺乳动物的心脏、卵巢、淋巴组织等中,参与机体心血管系统、生殖系统等多个系统的病理生理过程,具有调控细胞增殖、自噬、氧化应激和凋亡的作用[14-23]。Apelin-13是Apelin的亚型之一,具有较强的生物活性,通过与APJ的结合,抑制淋巴细胞的类胆碱能活性,进而抑制炎症反应[19, 24]。有研究[20]表明,Apelin-13的高表达与妊娠有关,高水平的Apelin-13可能为妊娠所必需。此外,Apelin-13可抑制M1型巨噬细胞活性,促进经典的促炎亚群M1型巨噬细胞向选择性的抗炎亚群M2型巨噬细胞分化[25-27]。输卵管修复再通需要清除坏死组织,促进瘢痕粘连的吸收、抑制增生性瘢痕的形成和炎症反应是再通成功的关键。本研究首先制备Apelin-13缓释微囊,并对其基本特性进行评价,再进一步观察载Apelin-13缓释微囊的输卵管PLGA三维生物支架促进输卵管修复再通的作用,以期为输卵管病变造成的不孕患者提供新的治疗思路和方案。

1. 材料与方法

1.1. 实验动物

无特定病原体(specific pathogen free,SPF)级新西兰雌兔,4~5月龄,未孕,体重(2.50±0.25) kg,由中南大学实验动物学部提供。本研究已通过中南大学实验动物福利伦理委员会批准(审批号:2020sydw0409)。

1.2. PLGA三维生物支架的制作及评价

1.2.1. 输卵管生物支架的三维建模

取2只新西兰雌兔,予腹腔注射3%的戊巴比妥钠注射液(剂量为30 mg/kg)麻醉,暴露子宫和双侧输卵管;在肾动脉上方注入4%的多聚甲醛,直到输卵管变白、变硬;取输卵管峡部1 cm,用4%的多聚甲醛固定;根据常规石蜡切片染色方法,依次经过梯度酒精脱水、透明、包埋处理后,行横断面连续切片,切片间隔45 μm,切片厚5 μm,共获取切片300张;常规脱蜡后对切片进行HE染色,最后进行脱水、透明、封片处理;利用光学显微镜摄像机采集300幅二维图像,将图像数据输入三维重建软件系统,生成输卵管三维模型;采用冷拔工艺,获得与输卵管横截面一致的金属模具。

1.2.2. PLGA三维生物支架的构建

用精密天平称量PLA、PGA(购自山东济南岱罡生物工程有限公司),按PLA、PGA聚合比50꞉50配制PLGA;用适当的二氯甲烷溶液溶解,然后加入NaHCO3颗粒,将混合液倒入1.2.1中制备好的金属模具中;经离心、干燥、洗涤后,获得输卵管PLGA三维生物支架;用凝胶色谱法测定三维支架材料PLGA的相对分子质量,用扫描电镜确定管壁微孔直径。

1.2.3. PLGA三维生物支架体内降解的检测

将16只新西兰雌兔麻醉,暴露臀大肌,形成肌袋,植入PLGA三维生物支架(图1);在术后第1、2、3、4周,各随机处死4只。去除支架周围组织后,观察一般情况(包括伤口情况)、植入材料和周围组织。根据以下公式确定PLGA三维生物支架的质量损失率:质量损失率=(降解前质量-降解后质量)/降解前质量×100%。

图1.

图1

Apelin-13缓释微囊的新型生物支架植入新西兰雌兔输卵管

Figure 1 A novel bioscaffold containing Apelin-13 sustained-release microcapsules was implanted into the fallopian tubes of New Zealand female rabbit

1.3. Apelin-13缓释微囊的制备及评价

1.3.1. Apelin-13缓释微囊的制备

将0.1 g PLGA加入500 mL二氯甲烷溶液中,搅拌得到油相;将Apelin-13冻干粉加入5 mL PBS中,制成内水相;将油相加入内水相,经超声乳化探头搅拌乳化后,得到乳化液;将乳化液加入医用聚乙烯醇[poly (vinyl alcohol),PVA]中进行双乳化,搅拌、过滤、离心、洗涤后得到Apelin-13缓释微囊。

1.3.2. Apelin-13缓释微囊体外释药检测

将50 mg的Apelin-13缓释微囊置于透析袋中,在第1~21天取样,用紫外分光光度法测定Apelin-13标准溶液,建立标准回归方程;用微孔膜过滤Apelin缓释微囊样品,采用紫外分光光度法,每隔5 d测定1次样品溶液中Apelin-13的吸光度值(A);根据回归方程,计算Apelin-13缓释微囊的药物浓度(C)及体外累积释药率。

1.3.3. Apelin-13缓释微囊体内释药检测

对新西兰雌兔臀肌局部注射Apelin-13缓释微囊(剂量1.2 g/kg);在术后第1~30天,每5 d取兔耳静脉血,并采用高效液相色谱法测定血浆中Apelin-13的浓度。

1.3.4. Apelin-13缓释微囊载药系统体外降解检测

将16份干Apelin-13缓释微囊(每粒约100 mg)溶于10 mL PBS溶液中;每隔1周取4份样品,光镜下观察1滴溶液;将剩余的PBS溶液离心得到微囊,然后冷冻、干燥、称重。根据以下公式计算体外微囊的降解率:降解率=(降解前质量-降解后质量)/降解前质量×100%。

1.4. 载Apelin-13缓释微囊的输卵管PLGA三维生物支架促进输卵管修复再通

1.4.1. 慢性输卵管炎模型的构建

于实验前6 h,在新西兰雌兔后肢外侧肌肉丰富处予肌内注射人绒毛膜促性腺激素(human chorionic gonadotropin,HCG)80 U;予兔耳缘静脉注射3%的戊巴比妥钠溶液(剂量1 mL/kg)进行麻醉后,固定并暴露其外阴,予新生儿6号吸痰管进行经阴道宫腔插管,插入深度8~10 cm,回抽无尿液确认在宫腔内后,将大肠埃希菌液(3×108/mL)注入宫腔(1 mL/kg),抬高兔臀约3 min。

1.4.2. 分组及干预

将新西兰雌兔随机分为4组:对照组、模型组、微囊组、支架微囊组,每组20只。模型组实验兔造模成功后不予干预;微囊组实验兔造模成功后经腹由输卵管伞端注入Apelin-13缓释微囊,剂量2.4 mg/(kg·d);支架微囊组实验兔造模成功后经腹由输卵管伞端置入载Apelin-13缓释微囊的PLGA三维生物支架,并推向输卵管近端;对照组实验兔在造模时用同体积的生理盐水代替大肠埃希菌液,其他同模型组。

1.4.3. 输卵管通畅性的观察

于术后第1和第4周处死实验兔,一侧输卵管予亚甲蓝通液观察管腔通畅情况,另一侧留取输卵管标本备检。判断输卵管通畅程度的标准:1)通畅,注射亚甲蓝溶液时无阻力或仅有轻微阻力,输卵管明显充盈,亚甲蓝溶液从输卵管伞流出;2)梗阻,注射亚甲蓝溶液时阻力大,输卵管未充盈或部分充盈,输卵管伞无亚甲蓝溶液流出。

1.4.4. 镜下观察

取各组输卵管间质部组织,用10%的多聚甲醛固定,石蜡包埋,制作5 μm厚石蜡切片,行HE染色,在光学显微镜下观察管腔、黏膜皱襞结构、细胞间质。

取各组输卵管组织标本,进行固定(2%戊二醛、1%锇酸)、脱水(丙酮)、包埋(环氧树脂)、半薄切片定位后,在光学显微镜下观察并定位,行超薄切片,经柠檬酸铅和醋酸铀双重染色,最后在透射电镜下检查,观察并比较各组超微结构上的差异。

1.4.5. 免疫组织化学及结果判断

免疫组织化学染色试剂盒购自武汉博士德生物工程有限公司。制作5 μm厚石蜡切片,行常规二甲苯脱蜡,梯度乙醇脱二甲苯,抗原修复;在自然条件下冷却,在室温下用H2O2孵育以灭活内源性过氧化物酶;加入山羊血清封闭液,向每张切片滴加50 μL的雌激素受体(estrogen receptor,ER)一抗(1꞉400)或孕激素受体(progesterone receptor,PR)一抗(1꞉400),在4 ℃冰箱过夜,用PBS反复冲洗;滴加二抗,在37 ℃下孵育30 min,用PBS反复冲洗;用二氨基联苯胺(diaminobezidin,DAB)染色3~5 min,水洗10 min;用苏木精复染,行常规脱水、透明、中性树胶封片。

在光学显微镜下(×200),每张切片取5个视野进行观察。判断标准:阳性细胞率10%~30%为(+);31%~50%为(++);50%以上为(+++);无或极少数阳性细胞染色为(-)。显微镜下可见着色清晰、边界明确的棕黄色阳性产物为染色阳性细胞。以PBS代替一抗作为空白对照。分别由经验丰富、中级以上职称的病理科和电镜医师双盲阅片。

1.5. 统计学处理

使用SPSS 17.0统计学软件进行数据分析。计量资料以均数±标准差( x¯ ±s)表示,采用非参数检验(Kruskal-Wallis检验和Mann-Whitney U检验)进行组间比较;计数资料采用例数和百分比(%)表示,分类数据的组间比较采用χ2检验。检验水准α=0.05,P<0.05为差异有统计学意义。

2. 结 果

2.1. PLGA三维生物支架的基本情况

三维重建软件系统生成的输卵管三维模型(图2A),输卵管PLGA三维生物支架(图2B)材料的相对分子质量为1.3×105,管壁微孔直径为0.20~0.35 mm(图2C~2F)。

图2.

图2

PLGA三维生物支架的特性

Figure 2 Characteristics of PLGA three-dimensional biological scaffold

A: Three-dimensional model of fallopian tube; B: PLGA three-dimensional biological scaffold (diameter 3.0 mm, 2.8 mm, respectively); C-F: Scanning electron microscopy of micropore in the PLGA three-dimensional biological scaffold [×60 (C), ×100 (D), ×200 (E), ×1 000 (F), respectively]; G: Curve of time-mass loss rate of PLGA three-dimensional biological scaffold in vivo.

在术后4周内,PLGA三维生物支架的周围肌肉组织无化脓、红肿等感染表现,亦无包块或积液形成;支架的形状略有改变,可能因为动物的运动使支架发生移位所致。从动物体内取出支架材料时,可见支架周围有一层组织包裹。在1、2周时,肌肉组织包裹并不紧密,周围形成的外膜可从支架表面剥离;在3、4周时,支架大部分降解,无法将其与周围组织分开。

PLGA三维生物支架在体内的降解随时间的延长而增加,术后4周时基本降解至98.66%,PLGA三维生物支架的时间-质量损失率曲线见图2G。

2.2. Apelin-13缓释微囊的基本情况

Apelin-13缓释微囊的照片、光学显微镜下照片和电子显微镜下照片见图3A~3C。

图3.

图3

Apelin-13缓释微囊的特性

Figure 3 Characteristics of Apelin-13 sustained-release microcapsules

A: Picture of microcapsules; B: Microcapsules under the optical microscope (×40); C: Microcapsules under the electron microscope (×400); D: Curve of time-cumulative drug release rate of Apelin-13 microcapsules in vitro; E: Time-concentration curve of Apelin-13 in vivo; F: Time-degradation rate curve of Apelin-13 microcapsules in vitro.

Apelin-13缓释微囊体外释药的回归方程为A=0.0125C-0.0004(r=0.9999,P<0.001),其中A为溶液的吸光度值,C为Apelin-13的药物浓度。当溶液的吸光度值在2.5~25.0时,溶液的吸光度值与Apelin-13的药物浓度呈良好的线性关系,体外释药在30 d内相对稳定,体外累积释药率与时间基本呈线性关系(图3D)。30 d体外累计释药率达98.68%,基本完成药物释放。

Apelin-13血药浓度在5 d内达到峰值,并在25 d内保持稳定(图3E)。术后30 d时,Apelin-13血药浓度降至(1.97±0.70) μg/mL。

Apelin-13缓释微囊在体外的降解与PLGA支架降解时间相同,随时间延长而增加,4周后降解率为70.58%,大部分微囊在4周内降解(图3F)。

2.3. 载缓释微囊PLGA三维生物支架促进兔输卵管修复再通

实验兔术后状态良好,大部分伤口无明显感染和分泌物,术后1周左右完全愈合。所有实验兔均进入最终的结果分析。

2.3.1. 输卵管畅通情况

亚甲蓝通液显示:术后第1周,对照组、微囊组、支架微囊组输卵管通畅率均为100%,模型组通畅率为80%。术后第4周,对照组、支架微囊组输卵管通畅率(100%)优于微囊组(80%),微囊组优于模型组(50%)。

2.3.2. 光镜下输卵管的形态

对照组输卵管黏膜皱襞发达,纵行皱襞二级分支清晰可见;管腔完整,浆膜层光滑;黏膜上皮由纤毛细胞和分泌细胞组成,有明显的假复层;输卵管黏膜上皮细胞呈高柱状,纤毛长且密集,固有层有丰富毛细血管且呈扩张状态(图4A、4B)。

图4.

图4

在光镜下观察输卵管组织形态(HE×400)

Figure 4 Morphology of fallopian tube tissue observed under the light microscope (HE, ×400)

A and B: Lumen is intact, serosal layer is smooth, with high columnar ciliated cells, secretory cells, and dilated capillaries visible in the control group at 1 week (A) or 4 weeks (B) after operation. C: Columnar epithelium and inflammatory cells are seen in the model group at 1 week after operation. D: Fibroblast proliferation and mucinous degeneration in the granulation tissue are seen in the model group at 4 weeks after operation. E: Microcapsule group at 1 week after operation. There are microcapsules in the lumen and lymphocyte infiltration. The interstitial cells are mildly edema and the morphology of columnar epithelial cells do not change significantly. F: Microcapsule group at 4 weeks after operation. A small amount of granulation tissue and scattered spindle forming fibrous cells can be seen. There is no obvious mucinous degeneration and phagocytosis and no microcapsules can be seen in the cavity. G: Scaffold-microcapsule group at 1 week after operation. There are an incomplete PLGA scaffold in the fallopian tube cavity and a small amount of lymphocytes. Mucosal folds are intact and smooth. No edema can be observed in columnar cells. H: Scaffold-microcapsule group at 4 weeks after operation. There are no obvious granulation tissue, fibrocytes, mucous degeneration, and inflammatory cells. The lumen is smooth with no scaffold being found and the columnar cells arranged neatly. PLGA: Poly(lactic-co-glycolic acid).

术后第1周:模型组输卵管内膜可见柱状上皮,在柱状上皮细胞间质可见炎症细胞浸润,细胞间质距离增宽(图4C);微囊组输卵管黏膜皱襞润滑,管腔内有微囊颗粒,黏膜层的柱状上皮细胞无明显形态改变,但细胞间质轻度水肿,散在少量淋巴细胞浸润(图4E);支架微囊组输卵管腔内有圆形套管,为未完全降解的PLGA支架。输卵管黏膜皱襞完整,内膜上的柱状细胞无水肿,细胞间质可见少量淋巴细胞(图4G)。

术后第4周:模型组输卵管管壁上有纤维细胞增生的肉芽组织,同时局部黏液变性形成(图4D),肉芽组织中可见吞噬现象的巨噬细胞。微囊组输卵管管壁上有少量肉芽组织,有散在梭形成纤维细胞,未见明显黏液变性和吞噬现象,管腔内无微囊 (图4F)。支架微囊组输卵管管壁无明显肉芽组织,未见明显纤维细胞,输卵管管腔自然平滑,未见支架,内膜柱状细胞排列整齐有序,无黏液变性,无具有吞噬异物功能的巨噬细胞和淋巴细胞等炎症细胞(图4H)。

2.3.3. 透射电镜下输卵管的形态

对照组(图5A~5C)输卵管峡部超微结构正常,黏膜上皮的纤毛细胞游离面纤毛整齐排列并且密集,纤毛之间夹杂少量微绒毛;细胞内线粒体位于基底胞质、顶浆区及核周;分泌细胞与纤毛细胞分界清楚,胞质密度高于周围纤毛细胞,分泌细胞内细胞器及分泌颗粒稀少。

图5.

图5

在透射电镜下观察输卵管组织形态

Figure 5 Morphology of fallopian tube tissue observed under a transmission electron microscope

A-C: Control group. The ultrastructure of the isthmus of the fallopian tube is normal, with neatly arranged and dense ciliated cells on the free surface of the mucosal epithelium, and a small amount of microvilli between the cilia (A). The boundary between secretory cells and ciliated cells is clear (B). Mitochondria are distributed in the basal plasma, parietal plasma, and perinuclear region (C). D-F: Model group. There are ciliated cells with broken or reduced cilia, and sparse and disordered microvilli (D). Secretory cells are active, with an increase or partial fusion of secretory granules at the top (E). Edema or vacuoles can be seen in the mitochondria (F). G-I: Microcapsule group. There is no significant abnormality in the ciliated cells (G), secretory cells (H), and mitochondria (I). J-L: Scaffold-microcapsule group. There is no significant abnormality in the ciliated cells (J), secretory cells (K), and mitochondria (L).

术后第4周,模型组(图5D~5F)纤毛细胞纤毛断裂、减少,微绒毛稀疏、紊乱,线粒体水肿或空泡形成。分泌细胞活跃,顶部的分泌颗粒增加或部分融合。微囊组(图5G~5I)、支架微囊组(图5J~5L)损伤较模型组轻,细胞核、线粒体、内质网等细胞器未见明显异常。

2.3.4. ER、PR表达情况

输卵管黏膜上皮细胞的细胞核中有棕黄色染色颗粒(图6)。术后第1周、第4周,对照组、模型组、微囊组、支架微囊组之间ER、PR阳性表达的差异均有统计学意义(均P<0.05,表1)。对照组、支架微囊组术后第1周、第4周ER、PR的表达均明显高于微囊组(均P<0.05),微囊组ER、PR的表达均高于模型组(均P<0.05),对照组、支架微囊组之间ER、PR的表达差异均无统计学意义(均P>0.05,表1)。

图6.

图6

输卵管ERPR的表达

Figure 6 Expression of ER and PR in fallopian tube determined by immunohistochemistry

A: ER(-); B: ER (+); C: ER (++); D: ER (+++); E: PR(-); F: PR (+); G: PR (++); H: PR (+++). ER: Estrogen receptor; PR: Progesterone receptor.

表 1.

输卵管黏膜上皮细胞ERPR的表达情况(n=10)

Table 1 Expression of ER and PR in epithelial cells of fallopian tube mucosa (n=10)

组别 术后第1周ER的表达/例 术后第4周ER的表达/例
- + ++ +++ - + ++ +++
对照 0 1 4 5 0 2 4 4
模型 4 6 0 0 2 3 3 2
微囊 2 2 4 2 1 3 4 2
支架微囊 1 2 4 3 1 2 4 3
组别 术后第1周PR的表达/例 PR术后第4周PR的表达/例
- + ++ +++ - + ++ +++
对照 0 0 4 6 0 0 4 6
模型 5 4 1 0 1 3 2 4
微囊 2 3 4 1 1 1 4 4
支架微囊 1 1 4 4 0 1 4 5

4组间比较采用Kruskal-Wallis法检验(ER术后第1周:χ2=8.888,P=0.012;ER术后第4周:χ2=9.473,P=0.010;PR术后第1周:χ2=16.582,P<0.001;PR术后第4周:χ2=9.967,P=0.009)。ER:雌激素受体;PR:孕激素受体。

3. 讨 论

不孕是指在正常性生活的情况下,1年内未采取避孕措施但未受孕。输卵管、盆腔腹膜、宫颈、子宫、外阴、阴道的病理改变,排卵功能异常及免疫因素[28]均可导致女性不孕,其中输卵管炎性阻塞是造成女性不孕的主要原因。介入治疗、宫腹腔镜联合插管通液是临床常用的输卵管阻塞再通治疗方法,但均不能完全解决输卵管再次梗阻导致的手术失败[29-31]。分析其失败的主要原因如下:1)输卵管腔粘连分离术后再次粘连,导致解剖修复失败;2)输卵管管腔粘连分离术后,先前受损的输卵管黏膜上皮细胞功能的再生和修复仍未改善。故改善再通术后输卵管的结构及生理功能是提高妊娠率的关键。

为减轻输卵管炎症反应,促进黏膜内皮的修复和再生,本研究选用具有改善病变组织内炎症微环境、调控微循环作用的药物——Apelin-13,并用微囊包裹Apelin-13置入炎性输卵管管腔。该体系下Apelin-13的释放速率稳定,输卵管腔在一定时间内能保持有效药物浓度。Apelin-13可以促进炎性病灶的吸收、输卵管的再通及输卵管黏膜内皮损伤后的修复与再生,有利于输卵管生理功能的恢复。与模型组相比,微囊组输卵管的再通率更高,且肉芽组织、纤维组织增生程度较轻,未出现黏液变性及巨噬细胞。输卵管纤毛细胞纤毛的摆动,与其输送受精卵的功能密切相关;分泌细胞可以生成输卵管液,直接影响输卵管内环境的状态。本研究通过透视电镜观察输卵管的超微结构,发现模型组的纤毛细胞结构异常,细胞内细胞核、线粒体均出现不同程度的损伤,微囊组超微结构的损伤程度较模型组轻,并且在术后第4周基本恢复正常。同时,微囊组ER、PR的阳性表达也均强于模型组,说明Apelin-13缓释微囊可调节输卵管内的受精环境,加速输卵管生理功能的恢复。

笔者所在的研究组将组织工程与临床相结合,初步研发了一种载Apelin-13缓释微囊的PLGA输卵管三维生物支架,并已获得2项专利。一方面,PLGA三维生物支架早期在炎性输卵管发挥持续性的支撑保护、防瘢痕的作用,阻止输卵管粘连复发,后期可完全降解[32],且对机体和子宫容受性完全无影响,使管腔有充分的时间进行输卵管解剖结构的修复;另一方面,Apelin-13缓释微囊在炎性输卵管内缓慢、有效、持续地释放Apelin-13,使病变局部长期维持有效的药物浓度[33-37],有利于输卵管黏膜上皮再生,恢复输卵管生理功能。其创新之处在于将具有良好生物降解性和组织相容性的PLGA材料应用于输卵管修复再通,加上抑制输卵管内炎症微环境、调控微循环的Apelin-13缓释微囊的运用,从解剖修复和功能再生2个方面恢复输卵管的解剖结构和生理功能,有望实现真正有效的输卵管修复再通。本研究在输卵管管腔内置入载Apelin-13缓释微囊的PLGA三维生物支架。PLGA三维生物支架壁上存在与碳酸氢钠颗粒大小直径相当的微孔,这些微孔不仅有助于氧和营养的交换,而且可以避免防止成纤维细胞形成瘢痕,有利于输卵管解剖结构和生理功能的修复。术后支架微囊组的再通率与对照组的差异无统计学意义;光镜下观察发现术后第1周支架微囊组的细胞间质中可见少量淋巴细胞,急性炎症反应明显轻于模型组和微囊组,术后第4周支架微囊组无明显肉芽组织及成纤维细胞出现,未见巨噬细胞和炎症细胞;透射电镜下观察发现支架微囊组的输卵管纤毛细胞排列紧密,折断不明显,分泌细胞的分泌颗粒接近正常;同时,术后第1周和第4周支架微囊组与对照组输卵管ER、PR的阳性表达情况差异无统计学意义。这些结果表明载Apelin-13缓释微囊的PLGA三维生物支架用于炎性输卵管再通时在防止改善输卵管内的受精环境,恢复输卵管的解剖结构和生理功能方面均有着较优的效果。

综上,载Apelin-13缓释微囊的PLGA三维生物支架融合了PLGA材料良好的生物降解性、组织相容性、韧性和可加工性等优点,以及Apelin-13改善病变组织内炎症微环境、调控微循环的作用,能有效促进输卵管修复再通,恢复纤毛和分泌细胞的功能,改善输卵管的解剖结构和生理功能。

基金资助

湖南省自然科学基金(2021JJ31036,2021JJ70070);湖南省卫生健康委员会科研计划项目(202205014861)。

This work was supported by the Natural Science Foundation of Hunan Province (2021JJ31036, 2021JJ70070) and the Scientific Research Plan Project of Health Commission of Hunan Province (202205014861), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

赵群 研究实施,数据采集与分析;薛敏 统计分析,数据采集及分析;李俞延 数据采集与分析;郑义凡、徐哲伟 论文起草及修改;李志跃 实验构思与设计,论文修改与指导。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023091304.pdf

参考文献

  • 1. Tamrakar SR, Bastakoti R. Determinants of infertility in couples[J]. J Nepal Health Res Counc, 2019, 17(1): 85-89. 10.33314/jnhrc.v17i01.1827. [DOI] [PubMed] [Google Scholar]
  • 2. Grover SB, Antil N, Katyan A, et al. Niche role of MRI in the evaluation of female infertility[J]. Indian J Radiol Imaging, 2020, 30(1): 32-45. 10.4103/ijri.ijri_377_19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. 夏恩兰. 输卵管性不孕微创手术的过去、现在与未来[J]. 国际生殖健康/计划生育杂志, 2016, 35(3): 181-186. [Google Scholar]; XIA Enlan. Minimally invasive surgery for tubal infertility: the past, present and future[J]. Journal of International Reproductive Health/Family Planning, 2016, 35(3): 181-186. [Google Scholar]
  • 4. Acharya KS, Acharya CR, Provost MP, et al. Ectopic pregnancy rate increases with the number of retrieved oocytes in autologous in vitro fertilization with non-tubal infertility but not donor/recipient cycles: an analysis of 109, 140 clinical pregnancies from the Society for Assisted Reproductive Technology registry[J]. Fertil Steril, 2015, 104(4): 873-878. 10.1016/j.fertnstert.2015.06.025. [DOI] [PubMed] [Google Scholar]
  • 5. Xiao L, Liu D, Song Y, et al. Reproductive outcomes after operative laparoscopy of patients with tubal infertility with or without hydrosalpinx[J]. Chin Med J (Engl), 2014, 127(3): 593-594. [PubMed] [Google Scholar]
  • 6. Jitchanwichai A, Soonthornpun K. Effect of premedication hyoscine-N-butylbromide before hysterosalpingography for diagnosis of proximal tubal obstruction in infertile women: a randomized double-blind controlled trial[J]. J Minim Invasive Gynecol, 2019, 26(1): 110-116. 10.1016/j.jmig.2018.03.034. [DOI] [PubMed] [Google Scholar]
  • 7. Wang X, Pan M, Wen J, et al. A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly(lactic-co-glycolic acid) conduit[J]. Neural Regen Res, 2014, 9(24): 2132-2141. 10.4103/1673-5374.147944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Barati D, Watkins K, Wang ZB, et al. Injectable and crosslinkable PLGA-based microribbons as 3D macroporous stem cell niche[J/OL]. Small, 2020, 16(22): e1905820[2023-02-01]. 10.1002/smll.201905820. [DOI] [PubMed] [Google Scholar]
  • 9. Wang Z, Hu J, Yu J, et al. Preparation and characterization of nano-laponite/PLGA composite scaffolds for urethra tissue engineering[J]. Mol Biotechnol, 2020, 62(3): 192-199. 10.1007/s12033-020-00237-z. [DOI] [PubMed] [Google Scholar]
  • 10. 宋堃玲, 王勤. 聚乳酸基形状记忆输卵管避孕器的制备与应用安全性分析[J]. 中国组织工程研究, 2016, 20(12): 1787-1792. 10.3969/j.issn.2095-4344.2016.12.017. 27730404 [DOI] [Google Scholar]; SONG Kunling, WANG Qin. Poly(D, L-lactide)-based shape-memory intrauterine device: preparation and application security[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(12): 1787-1792. 10.3969/j.issn.2095-4344.2016.12.017. [DOI] [Google Scholar]
  • 11. Kazemi L, Rahbarghazi R, Salehi R, et al. Superior synaptogenic effect of electrospun PLGA-PEG nanofibers versus PLGA nanofibers on human neural SH-SY5Y cells in a three-dimensional culture system[J]. J Mol Neurosci, 2020, 70(12): 1967-1976. 10.1007/s12031-020-01596-7. [DOI] [PubMed] [Google Scholar]
  • 12. Gourishetti K, Keni R, Nayak PG, et al. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats[J]. Int J Nanomedicine, 2020, 15: 9265-9282. 10.2147/IJN.S268941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Yoo J, Won YY. Phenomenology of the initial burst release of drugs from PLGA microparticles[J]. ACS Biomater Sci Eng, 2020, 6(11): 6053-6062. 10.1021/acsbiomaterials.0c01228. [DOI] [PubMed] [Google Scholar]
  • 14. Arababadi MK, Asadikaram P, Asadikaram G. APLN/APJ pathway: the key regulator of macrophage functions[J]. Life Sci, 2019, 232: 116645. 10.1016/j.lfs.2019.116645. [DOI] [PubMed] [Google Scholar]
  • 15. Mercati F, Scocco P, Maranesi M, et al. Apelin system detection in the reproductive apparatus of ewes grazing on semi-natural pasture[J]. Theriogenology, 2019, 139: 156-166. 10.1016/j.theriogenology.2019.08.012. [DOI] [PubMed] [Google Scholar]
  • 16. Liu Q, Jiang J, Shi Y, et al. Apelin/Apelin receptor: a new therapeutic target in Polycystic Ovary Syndrome[J]. Life Sci, 2020, 260: 118310. 10.1016/j.lfs.2020.118310. [DOI] [PubMed] [Google Scholar]
  • 17. Li A, Zhao Q, Chen L, et al. Apelin/APJ system: an emerging therapeutic target for neurological diseases[J]. Mol Biol Rep, 2023, 50(2): 1639-1653. 10.1007/s11033-022-08075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Chen J, Li Z, Zhao Q, et al. Roles of apelin/APJ system in cancer: Biomarker, predictor, and emerging therapeutic target[J]. J Cell Physiol, 2022, 237(10): 3734-3751. 10.1002/jcp.30845. [DOI] [PubMed] [Google Scholar]
  • 19. Luo H, Han L, Xu J. Apelin/APJ system: a novel promising target for neurodegenerative diseases[J]. J Cell Physiol, 2020, 235(2): 638-657. 10.1002/jcp.29001. [DOI] [PubMed] [Google Scholar]
  • 20. Eberlé D, Marousez L, Hanssens S, et al. Elabela and Apelin actions in healthy and pathological pregnancies[J]. Cytokine Growth Factor Rev, 2019, 46: 45-53. 10.1016/j.cytogfr.2019.03.003. [DOI] [PubMed] [Google Scholar]
  • 21. Estienne A, Bongrani A, Reverchon M, et al. Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models[J]. Int J Mol Sci, 2019, 20(18): 4431. 10.3390/ijms20184431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Zhou Q, Cao J, Chen L. Apelin/APJ system: a novel therapeutic target for oxidative stress-related inflammatory diseases (Review)[J]. Int J Mol Med, 2016, 37(5): 1159-1169. 10.3892/ijmm.2016.2544. [DOI] [PubMed] [Google Scholar]
  • 23. Luo J, Zhao Q, Li Z, et al. Multiple roles of apelin/APJ system in eye diseases[J]. Peptides, 2022, 152: 170767. 10.1016/j.peptides.2022.170767. [DOI] [PubMed] [Google Scholar]
  • 24. Yamazaki S, Sekiguchi A, Uchiyama A, et al. Apelin/APJ signaling suppresses the pressure ulcer formation in cutaneous ischemia-reperfusion injury mouse model[J]. Sci Rep, 2020, 10(1): 1349. 10.1038/s41598-020-58452-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Izgüt-Uysal VN, Gemici B, Birsen I, et al. The effect of apelin on the functions of peritoneal macrophages[J]. Physiol Res, 2017, 66(3): 489-496. 10.33549/physiolres.933349. [DOI] [PubMed] [Google Scholar]
  • 26. Arababadi MK, Asadikaram P, Asadikaram G. APLN/APJ pathway: The key regulator of macrophage functions[J]. Life Sci, 2019, 232: 116645. 10.1016/j.lfs.2019.116645. [DOI] [PubMed] [Google Scholar]
  • 27. Masoud AG, Lin J, Azad AK, et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury[J]. J Clin Invest, 2020, 130(1): 94-107. 10.1172/JCI128469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Siristatidis C, Pouliakis A, Sergentanis TN. Special characteristics, reproductive, and clinical profile of women with unexplained infertility versus other causes of infertility: A comparative study[J]. J Assist Reprod Genet, 2020, 37(8): 1923-1930. 10.1007/s10815-020-01845-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. 赵艳丽. 介入再通与宫腹腔镜均配合活血化瘀法治疗输卵管阻塞性不孕的疗效对比[J]. 实用妇科内分泌杂志(电子版), 2016, 3(6): 111, 113. 10.16484/j.cnki.issn2095-8803.2016.06.069. [DOI] [Google Scholar]; ZHAO Yanli. Comparison of therapeutic effects of interventional recanalization and hysteroscopy combined with activating blood circulation and removing blood stasis in the treatment of tubal obstructive infertility[J]. Electronic Journal of Practical Gynecological Endocrinology, 2016, 3(6): 111, 113. 10.16484/j.cnki.issn2095-8803.2016.06.069. [DOI] [Google Scholar]
  • 30. Ng KYB, Cheong Y. Hydrosalpinx-salpingostomy, salpingectomy or tubal occlusion[J]. Best Pract Res Clin Obstet Gynaecol, 2019, 59: 41-47. 10.1016/j.bpobgyn.2019.01.011. [DOI] [PubMed] [Google Scholar]
  • 31. 罗惠娟, 周娟, 肖小敏, 等. 人脐带间充质干细胞治疗大鼠输卵管炎对血清炎症因子及输卵管结构功能的影响[J]. 中山大学学报(医学科学版), 2014, 35(3): 358-363. 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2014.0060. [DOI] [Google Scholar]; LUO Huijuan, ZHOU Juan, XIAO Xiaomin, et al. Therapeutic influence of WJMSCs treatment on rat’s salpingitis on serum inflammatory factors and oviductal structure and function[J]. Journal of Sun Yat-sen University. Medical Sciences, 2014, 35(3): 358-363. 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2014.0060. [DOI] [Google Scholar]
  • 32. Li Z, Zhao Q, Bi R, et al. Construction of a three-dimensional bionic nerve conduit containing two neurotrophic factors with separate delivery systems for the repair of sciatic nerve defects[J]. Neural Regen Res, 2011, 6(13): 988-994. 10.3969/j.issn.1673-5374.2011.13.005. [DOI] [Google Scholar]
  • 33. Zhao Q, Li Z, Zhang Z, et al. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury[J]. Neural Regen Res, 2015, 10(9): 1491-1497. 10.4103/1673-5374.165522 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. 李志跃, 朱智波, 赵群, 等. 碱性成纤维细胞生长因子-聚乳酸羟基乙酸微球/羟基磷灰石/聚左旋乳酸有孔骨架材料的生物相容性[J]. 中国组织工程研究, 2018, 22(6): 914-920. 29509238 [Google Scholar]; LI Zhiyue, ZHU Zhibo, ZHAO Qun, et al. Biocompatibility of basic fibroblast growth factor-poly(lactic-co-glycolic acid) microspheres/hydroxyapatite/poly(l-lactic acid) porous materials[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(6): 914-920. 10.3969/j.issn.2095-4344.0068. [DOI] [Google Scholar]
  • 35. Li Z, Wang W, Zhao Q, et al. Apelin inhibits motor neuron apoptosis in the anterior horn following acute spinal cord and sciatic nerve injury[J]. Neural Regen Res, 2011, 6(20): 1525-1529. 10.3969/j.issn.1673-5374.2011.20.001 [DOI] [Google Scholar]
  • 36. Xu Z, Li Z. Experimental study on the role of apelin-13 in alleviating spinal cord ischemia reperfusion injury through suppressing autophagy[J]. Drug Des Dev Ther, 2020, 14: 1571-1581. 10.2147/dDDT.s241066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Peng QM, Zhou JH, Xu ZW, et al. Apelin-13 ameliorates LPS-induced BV-2 microglia inflammatory response through promoting autophagy and inhibiting H3K9ac enrichment of TNF-α and IL-6 promoter[J]. Acta Neurobiol Exp (Wars), 2022, 82(1): 65-76. 10.55782/ane-2022-006. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES