Abstract
多发性骨髓瘤(multiple myeloma,MM)是一种骨髓中浆细胞克隆增生性恶性肿瘤。随着中国人口老龄化,MM发病率呈上升趋势。多发性骨髓瘤骨病(multiple myeloma bone disease,MBD)是MM的显著特征之一,80%~90%的MM患者在首次就诊时即伴随溶骨性病变。MBD不仅增加患者伤残率,而且其所致的骨骼病变及骨骼相关事件严重降低患者身体机能。目前用于治疗MBD的药物效果不佳且伴有不良反应,因此,寻找新的治疗MBD的方法尤为重要。通常认为,破骨细胞活性增强和成骨细胞功能受抑是MBD的主要病理学机制。然而,越来越多的研究认为骨髓微环境中可溶性分子包括细胞因子、胞外体、代谢物等在MBD的发生中起不可或缺的作用。因此,从多种角度探讨MBD发生的分子机制,寻找预测性生物标志物及潜在治疗靶点,对MBD的临床治疗具有一定的意义。
Keywords: 多发性骨髓瘤骨病, 骨髓微环境, 细胞因子, 胞外体, 代谢产物
Abstract
Multiple myeloma (MM) is a clonal proliferative malignant tumor of plasma cells in bone marrow. With the aging of population in China, the incidence of MM is on the rise. Multiple myeloma bone disease (MBD) is one of the common clinical manifestations of MM, and 80%-90% of MM patients are accompanied by osteolytic lesions at the time of their first visit to the clinic. MBD not only increases the disability rate of patients, but also severely reduces the physical function of patients due to skeletal lesions and bone-related events. Currently available drugs for treating of MBD are ineffective and associated with side effects. Therefore, it is important to find new therapeutic approaches for the treatment of MBD. It is generally believed that the increased osteoclast activity and suppressed osteoblast function are the main pathologic mechanisms for MBD. However, more and more studies have suggested that soluble molecules in the bone marrow microenvironment, including cytokines, extracellular bodies, and metabolites, play an important role in the development of MBD. Therefore, exploring the occurrence and potential molecular mechanisms for MBD from multiple perspectives, and identifying the predictive biomarkers and potential therapeutic targets are of significance for the clinical treatment of MBD.
Keywords: multiple myeloma bone disease, bone marrow microenvironment, cytokines, exosome, metabolites
多发性骨髓瘤(multiple myeloma,MM)是一种好发于中老年人的恶性浆细胞疾病。多发性骨髓瘤骨病(multiple myeloma bone disease,MBD)是MM最常见的临床表现之一,随着病程的进展,80%~90%的患者在首次就诊时即伴有溶骨性病变和剧烈骨痛,超过50%的患者出现压缩性骨折,严重降低MM患者的生活质量[1]。因此,深入探索MBD发病机制为其治疗提供新的思路具有重要意义。
MBD的病理学机制主要涉及骨髓微环境各类细胞或其分泌型产物与破骨前体细胞、成骨前体细胞的相互作用,以及刺激破骨细胞活化和抑制成骨细胞功能。骨髓微环境由成骨细胞、破骨细胞、骨细胞、内皮细胞、间充质干细胞、造血细胞和细胞因子等可溶性因子组成。其中,MM细胞作为MM骨髓微环境中最重要的细胞成分,可通过直接或间接作用促进MBD的发生。MM细胞通过整合素α4β7(very late antigen-4,VLA-4)和表达血管细胞黏附分子-1(vascular cellular adhesion molecule-1,VCAM-1即VLA-4配体)的骨髓基质细胞(bone marrow stromal cells,BMSCs)介导黏附作用,这是诱导溶骨性病变的关键[2-5]。除直接作用外,MM细胞还通过分泌细胞因子等间接作用在MBD中发挥重要作用。骨髓微环境中其他细胞如淋巴细胞、骨细胞、血管内皮细胞和脂肪细胞等同样通过直接或间接作用诱导破骨细胞活化和成骨细胞失活。骨髓微环境细胞分泌的可溶性因子主要包括细胞因子、胞外体和代谢产物。本文就细胞因子、胞外体及代谢产物介导MM破骨细胞和成骨细胞失衡的调控机制予以综述。
1. 细胞因子介导MBD的机制
细胞因子是指由免疫细胞和某些非免疫细胞(内皮细胞、表皮细胞等)经刺激而合成、分泌的一类具有广泛生物学活性的小分子蛋白质,可分为肿瘤坏死因子超家族、趋化因子、白细胞介素、生长因子、集落刺激因子、干扰素等,其与相应受体结合调节细胞生长、分化等。在MM骨髓微环境中,恶性浆细胞、骨细胞和骨髓间充质细胞相互作用产生大量细胞因子,这些因子通过促进破骨细胞分化和抑制新骨生成,打破骨骼重建平衡,导致溶骨性损伤。
1.1. 细胞因子介导破骨细胞活化
在MM骨髓微环境中,恶性浆细胞和其他细胞通过直接作用产生诸多因子诱导破骨细胞活化。其中,肿瘤坏死因子家族成员之一核因子-κB受体激活因子配体(receptor activator of nuclear factor-kappa B ligand,RANKL)是诱导破骨细胞分化最重要的细胞因子,其诱导破骨细胞分化的主要机制是与破骨前体细胞表面受体核因子-κB受体激活因子(receptor activator of nuclear factor-kappa B,RANK)结合活化核因子-κB(nuclear factor-kappa B,NF-κB)信号通路。MM细胞与BMSCs直接接触上调RANKL的表达,诱导破骨细胞活化,导致MM溶骨性病变[6]。护骨素(osteoprotegerin,OPG)是由骨细胞分泌的RANKL的拮抗剂,通过阻断RANKL与RANK的结合,抑制NF-κB信号通路活化,从而抑制破骨细胞生成。研究[7]发现高比率RANKL/OPG的MM患者生存期较短。由此可见,RANKL与OPG的比例失调是MBD的重要诱因[8]。肿瘤坏死因子-α(tumor necrosis factor alpha,TNF-α)作为肿瘤坏死因子家族的另一重要成员,在MBD的发生中发挥重要作用。一方面,TNF-α通过上调BMSCs中的转录因子X盒结合蛋白1(X-box binding protein-1,XBP1)的表达促进RANKL和IL-6的产生,从而促进破骨细胞形成[9-10];另一方面,TNF-α本身可直接通过激活NF-κB信号通路诱导破骨细胞形成,增强RANKL的作用[11-12]。然而,目前尚不清楚MM患者体内TNF-α的来源。
趋化因子配体3[human chemokine (C-C motif) ligand 3,CCL3]是一种由MM细胞产生的趋化因子,可作用于BMSCs、破骨细胞、成骨细胞[13-15]。CCL3通过激活PI3K/Akt和ERK/MAPK通路及c-Myc表达,促进破骨细胞活化[16],同时增强RANKL和IL-6对破骨细胞的活化,从而诱导MBD的发生。CCL3单抗可以有效抑制抗酒石酸酸性磷酸酶(tartrated resistant acid phosphatse,TRAP)阳性破骨细胞的形成,同时减缓小鼠胶原诱导的关节炎进一步侵蚀[17-21]。
此外,白细胞介素家族IL-3和IL-6等细胞因子同样通过刺激破骨细胞形成和成熟的方式诱导MBD[22-24]。IL-3是由嗜碱性粒细胞和活化的T细胞分泌产生的一种细胞因子,可以增强MM细胞中RANKL的分泌,促进破骨细胞的增殖与活化。在MM骨髓微环境中浆细胞样树突状细胞(plasmacytoid dendritic cells,pDCs)数量增加,pDCs刺激MM细胞分泌IL-3,IL-3与激活素A共同介导核因子κB抑制因子α(nuclear factor-κB inhibitor,IκBα)/NF-κB信号通路的激活,进而促进破骨细胞的形成。同时IL-3可以促进pDCs存活和MM细胞生长,导致pDCs中IL-3受体(IL-3 receptor,IL-3R)表达上调。IL-3抑制剂SL-401可通过降低pDCs的活力来抑制MM细胞生长,也可作用于破骨前体细胞表面的IL-3R,从而抑制破骨细胞的形成[25]。IL-6主要由MM细胞分泌,通过增强破骨前体细胞细胞骨架相关蛋白4(cytoskeleton-associated protein 4,CKAP4)受体表达激活NF-κB信号通路[26],诱导破骨细胞生成。
1.2. 细胞因子抑制成骨细胞分化
骨髓微环境细胞释放成骨失活因子导致成骨细胞分化受抑是MBD发展的另一种机制。成骨细胞分化受Wnt,转化生长因子β(transforming growth factor-β,TGF-β)及骨形态发生蛋白(bone morphogenetic protein,BMP)通路调控。当骨髓微环境中负调控这些通路的细胞因子增加时,成骨细胞发育受阻,加重MBD。Dickkopf相关蛋白1(Dickkopf-1,DKK1)是MBD患者体内上升最显著的因子,主要由MM细胞和骨细胞分泌。DKK1通过竞争性地结合BMSCs表面的Wnt蛋白受体来抑制Wnt/β-catein通路,从而抑制成骨细胞分化[27]。此外,MM细胞通过分泌分泌型frizzled相关蛋白(secreted frizzled-related proteins,sFRPs)、骨硬化蛋白和Sostdc1蛋白[28]等抑制Wnt/β- catein信号通路,导致成骨细胞失活[26, 29-31]。TGF-β由骨基质中的骨细胞和成骨细胞以非活性形式产生,在骨吸收过程中可被破骨细胞激活。抑制TGF-β信号通路可恢复成骨细胞分化并抑制MM细胞生长[32-33]。BMP信号失活抑制成骨细胞分化是诱导MBD的另一种机制。肝细胞生长因子(hepatocyte growth factor,HGF)是BMP信号的负调节因子,主要由内皮细胞分泌[34-35]。研究[36]表明:与HGF水平正常的患者相比,HGF水平升高的MM患者骨特异性碱性磷酸酶(alkaline phosphatase,ALP)活性显著降低。这提示HGF通过抑制成骨细胞生成促进MBD的发生。BMP抑制剂LDN193189及BMPR1a-Fc在抑制破骨细胞生成和活化的同时,增加成骨细胞数量并抑制硬化素水平,有效改善MBD[37]。此外,前述调控破骨细胞产生的细胞因子CCL3和IL-3对成骨细胞分化具有抑制作用,其主要机制是下调成骨细胞分化重要调控分子Runt相关转录因子2(Runt-related transcription factor 2,RUNX2)、Osterix、ALP和骨钙素(osteocalcin,OCN)的表达[38-39](表1)。
表1.
细胞因子在多发性骨髓瘤骨病中的主要作用
Table 1 Main role of cytokines in multiple myeloma bone disease
| 细胞因子 | 水平 | 功能 | 参考文献 |
|---|---|---|---|
| RANKL | ↑ | 激活NF-κB信号通路,促进破骨细胞活化 | [6] |
| TNF-α | ↑ | 上调XBP1的表达,促进RANKL、IL-6产生;激活NF-κB信号,促进破骨细胞形成 | [9-12] |
| CCL3 | ↑ |
激活PI3K/Akt、ERK/MAPK通路促进破骨细胞活化,下调RUNX2、Osterix表达, 抑制成骨细胞分化 |
[16, 38-39] |
| IL-3 | ↑ | 抑制ALP、OCN表达及成骨细胞分化,增强RANKL分泌,促进破骨细胞活化 | [22-25] |
| IL-6 | ↑ | 增强破骨前体细胞CKAP4受体表达、激活NF-κB信号通路,促进破骨细胞形成 | [26] |
| OPG | ↓ | 与RANKL拮抗,抑制NF-κB信号通路活化,抑制破骨细胞活化 | [7-8] |
| DKK1 | ↑ | 结合Wnt蛋白受体抑制Wnt/β-catenin通路,抑制成骨细胞分化 | [27] |
| sFRPs | ↑ | 抑制Wnt/β-catenin通路,抑制成骨细胞活性 | [28-31] |
| TGF-β | ↑ | 破骨细胞激活TGF-β信号通路,抑制成骨细胞分化 | [32-33] |
| HGF | ↑ | 抑制ALP活性,抑制成骨细胞分化 | [34-36] |
RANKL:核因子-κB受体激活因子配体;TNF-α:肿瘤坏死因子-α;NF-κB:核因子-κB;XBP1:转录因子X盒结合蛋白1;RUNX2:Runt相关转录因子2;CCL3:趋化因子配体3;IL-3:白细胞介素3;ALP:碱性磷酸酶;OCN:骨钙素;IL-6:白细胞介素6;CKAP4:细胞骨架相关蛋白4;OPG:护骨素;DKK1:Dickkopf相关蛋白1;sFRPs:分泌型frizzled相关蛋白;TGF-β:转化生长因子β;HGF:肝细胞生长因子。
2. 胞外体介导MBD的机制
胞外体是指含有蛋白质、细胞因子、脂质、miRNA、长非编码RNA和环状RNA的盘状囊泡(40~100 nm),其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中。近年来,胞外体在MBD发生中的作用逐渐被阐明,其中MM细胞衍生的胞外体在MBD中的研究较多。MM细胞来源的胞外体主要通过向微环境传递蛋白、细胞因子和长非编码RNA促进MBD发生。
2.1. 胞外体介导破骨细胞活化
MM细胞来源的胞外体通过促进破骨细胞分化诱导MBD。MM细胞来源的胞外体不仅促进破骨细胞分化,而且抑制破骨前体细胞的凋亡并促进其存活。然而有研究[40]报道结直肠癌细胞的胞外体不具备诱导破骨细胞分化的功能,提示MM细胞分泌的胞外体含有特异性诱导破骨细胞分化的成分。随后Faict等[41]分析5TGM1细胞来源的胞外体成分,发现胞外体内体蛋白TSG101和Syntenin可增强破骨细胞的活性,抑制成骨细胞的分化和功能,诱导骨溶解。胞外体阻断剂GW4869可有效逆转骨溶解。此外,MM细胞能够通过向外界传递含IL-32胞外体的方式诱导骨溶解。MM细胞通过缺氧诱导因子1α(hypoxia-inducible factor-1α,HIF-1α)上调IL-32的表达,高表达IL-32的JJN3细胞胞外体通过激活NF-κB信号通路促进破骨细胞分化,而敲除IL-32的JJN3细胞胞外体对破骨细胞形成无显著作用。与IL-32表达较低的患者相比,高表达IL-32的MM患者的预后较差[42]。含HGF的MM细胞胞外体通过介导间充质上皮转化因子(c-mesenchymal-epithelial transition factor,c-Met)酸化激活HGF/c-Met信号通路,从而上调成骨细胞内IL-11的表达,促进破骨细胞的活化[43]。总之,MM细胞来源的胞外体通过分泌型蛋白质促进破骨细胞分化来诱导MBD。
2.2. 胞外体抑制成骨细胞分化
MM细胞来源的胞外体抑制BMSCs向成骨细胞分化是胞外体诱导MBD的另一重要机制。Zhang等[44]发现MM细胞胞外体上调BMSCs中miR-103a-3p的表达,抑制其向成骨细胞分化,从而加剧MBD的发生。Liu等[45]研究发现MM细胞的胞外体通过促进BMSCs分泌IL-6,上调脱嘌呤/脱嘧啶核酸内切酶1(apurinic/apyrimidinic endonuclease 1,APE1)和NF-κB的表达,导致RUNX2、Osterix和OCN的表达减少,从而抑制BMSCs的成骨分化。与MM细胞胞外体促进破骨细胞分化类似的是,胞外体同样通过传递蛋白质或非编码RNA导致骨形成损伤。譬如,MM来源的胞外体通过传递双调蛋白(amphiregulin,AREG)使表皮生长因子受体配体(epidermal growth factor receptor,EGFR)磷酸化增加,激活EGFR通路,促进MM细胞与BMSCs的黏附作用以及促进BMSCs释放IL-8来抑制成骨细胞的形成[46]。LncRNA RUNX2-AS1通过lncRUNX2-AS1/RUNX2途径特异性地抑制BMSCs的RUNX2表达从而抑制成骨细胞分化的能力[47]。Wu等[48]发现含有LINC00461的MM细胞胞外体通过下调BMSCs中miR-324-3p的表达,降低Wnt/β-catenin通路的活性,从而抑制骨髓间充质干细胞向成骨细胞分化。有趣的是,MM细胞胞外体的分泌依赖于特定的蛋白质。研究[49-52]表明:MM细胞胞外体分泌旺盛与肝素酶高表达相关,肝素酶抑制剂显著抑制MM的增殖、血管生成和骨转移。综上所述,MM细胞来源的胞外体通过增强破骨细胞活性和抑制成骨细胞分化在MBD中扮演重要角色(表2),靶向MM细胞胞外体的分泌与转移可能为MBD治疗提供新策略。
表2.
胞外体在多发性骨髓瘤骨病的主要作用
Table 2 Main role of exosomes in multiple myeloma bone disease
| 胞外体 | 水平 | 功能 | 参考文献 |
|---|---|---|---|
| AREG | ↑ | 抑制BMSCs中RUNX2表达,抑制成骨细胞分化 | [46] |
| TSG101 | ↑ | 促进破骨细胞活化、抑制成骨细胞分化 | [41] |
| Syntenin | ↑ | 促进破骨细胞活化、抑制成骨细胞分化 | [41] |
| IL-6 | ↑ | 上调APE1、NF-κB的表达,下调RUNX2、Osterix、OCN的表达,抑制成骨细胞分化 | [45] |
| IL-32 | ↑ | 激活NF-κB信号通路,促进破骨细胞分化 | [42] |
| HGF | ↑ | 激活HGF/c-Met信号通路,促进破骨细胞分化 | [43] |
| LINC00461 | ↑ | 下调BMSCs中miR-324-3p的表达,抑制成骨细胞分化 | [48] |
| RUNX2-AS1 | ↑ | 抑制BMSCs中RUNX2表达,抑制成骨细胞分化 | [47] |
AREG:双调蛋白;BMSCs:骨髓基质细胞;RUNX2:Runt相关转录因子2;TSG101:胞外体内体蛋白;Syntenin:胞外体内体蛋白;IL-6:白细胞介素6;APE1:脱嘌呤/脱嘧啶核酸内切酶1;OCN:骨钙素;IL-32:白细胞介素32;HGF:肝细胞生长因子;c-Met:间充质上皮转化因子。
3. 代谢产物介导MBD的机制
代谢产物包括糖、脂肪酸和氨基酸等。代谢产物在破骨细胞和成骨细胞的分化过程中同样发挥重要作用。脂肪酸代谢和氨基酸代谢失衡通过促进或抑制破骨细胞和成骨细胞分化从而诱导MBD。
3.1. 代谢产物介导破骨细胞活化
目前,代谢产物在MBD发生中的报道甚少。最新研究[53]发现:MBD患者MM细胞中基质金属蛋白酶13(matrix metallopeptidase-13,MMP13)呈高表达。高表达MMP13的MM细胞通过分泌MMP13促进患者骨髓I型骨胶原降解。而骨胶原最重要的成分是甘氨酸,骨胶原降解势必增加体内甘氨酸含量。反之,微环境中甘氨酸被MM细胞吸收利用进一步增强其恶性增殖和耐药的表型。在体内,限制外源性甘氨酸摄入能有效抑制MM骨溶解[53]。这一研究揭示了肿瘤细胞与骨胶原之间的恶性循环式相互作用,为后期MBD的治疗提供了新思路。
3.2. 代谢产物抑制成骨细胞分化
MM患者谷氨酰胺和脂肪酸代谢失衡抑制成骨细胞形成是诱导MBD的另一种机制。Chiu等[54]研究发现由于恶性浆细胞不表达谷氨酰胺合成酶,而MM细胞对谷氨酰胺高度上瘾,需通过谷氨酰胺酶消耗大量氨基酸以维持其活性状态,因此MM细胞通过吸收微环境中谷氨酰胺从而导致患者体内谷氨酰胺含量显著降低。BMSCs吸收谷氨酰胺后向成骨细胞分化的能力增强。骨髓微环境中低浓度谷氨酰胺不利于成骨细胞分化,从而抑制成骨细胞形成,诱导MBD。抑制MM细胞利用谷氨酰胺可能是预防MM溶骨性病变的新方法。Liu等[55]研究发现:MBD的发生与骨髓脂肪细胞密切相关,骨髓瘤细胞通过整合素6(integrin α 6,ITGa6)介导的ERK1/2和NF-κB信号通路诱导脂肪细胞重编程,增加脂肪细胞中多梳蛋白抑制复合物2(polycomb repressive complex 2,PRC2)的表达,从而上调过氧化物酶体增殖激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)基因组蛋白甲基化,PPARγ活性降低导致脂肪因子Adiponectin、Visfatin、Adipsin表达下调,而TNF-α表达上调,从而激活破骨细胞生成并抑制成骨细胞生成,最终诱导MBD的发生。
4. 结 语
骨髓微环境中可溶性分子(包括细胞因子、胞外体和代谢产物)通过介导破骨细胞活化和成骨细胞失活诱导MBD,为MBD的治疗提供理论依据和新靶点。骨髓微环境中细胞因子、胞外体和代谢产物既能单独诱导MBD,又能协同促进疾病进程。骨髓微环境中的细胞因子一方面通过直接与破骨前体细胞或成骨前体细胞表面受体相互作用,促进破骨细胞成熟,抑制成骨细胞,诱导MBD;另一方面,细胞因子被囊泡吸收后以胞外体的形式促进破骨细胞分化或抑制成骨细胞形成诱导MBD。氨基酸和脂肪酸代谢失衡是MBD的另一诱因,代谢产物直接作用于破骨前体细胞和成骨细胞诱导MBD。但是,尚未有文献报道代谢产物以胞外体的形式发挥作用。此外,细胞因子异常是否通过诱导骨髓微环境代谢失衡促进MBD,以及代谢失衡是否通过促进细胞因子异常表达发挥促MBD作用仍有待后续研究。目前,针对MBD患者RANKL异常增加而开发的临床药物地舒单抗临床疗效欠佳。未来,细胞因子、胞外体及代谢产物三者的调控机制的逐渐阐明,有望为MBD患者提供新的治疗靶点或联合用药方案。
基金资助
国家自然科学基金(82130006);湖南省研究生科研创新项目(CX20220348);中南大学研究生科研创新项目(2022ZZTS0266)。
This work was supported by the National Natural Science Foundation (82130006), the Postgraduate Research Innovation Project of Hunan Province (CX20220348), and the Fundamental Research Fund for Graduate of Central South University (2022ZZTS0266), China.
利益冲突声明
作者声称无任何利益冲突。
作者贡献
胡聪 文献查询,论文撰写及修改;匡春梅 论文修改;周文 论文指导。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023091403.pdf
参考文献
- 1. Kyle RA, Gertz MA, Witzig TE, et al. Review of 1 027 patients with newly diagnosed multiple myeloma[J]. Mayo Clin Proc, 2003, 78(1): 21-33. 10.4065/78.1.21. [DOI] [PubMed] [Google Scholar]
- 2. Hao P, Zhang CL, Wang RF, et al. Expression and pathogenesis of VCAM-1 and VLA-4 cytokines in multiple myeloma[J]. Saudi J Biol Sci, 2020, 27(6): 1674-1678. 10.1016/j.sjbs.2020.04.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Mori Y, Shimizu N, Dallas M, et al. Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis[J]. Blood, 2004, 104(7): 2149-2154. 10.1182/blood-2004-01-0236. [DOI] [PubMed] [Google Scholar]
- 4. Terpos E, Migkou M, Christoulas D, et al. Increased circulating VCAM-1 correlates with advanced disease and poor survival in patients with multiple myeloma: reduction by post-bortezomib and lenalidomide treatment[J/OL]. Blood Cancer J, 2016, 6(5): e428[2022-08-01]. 10.1038/bcj.2016.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Li X, Ding L, Wang YX, et al. Skeletal stem cell-mediated suppression on inflammatory osteoclastogenesis occurs via concerted action of cell adhesion molecules and osteoprotegerin[J]. Stem Cells Transl Med, 2020, 9(2): 261-272. 10.1002/sctm.19-0300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Teramachi J, Tenshin H, Hiasa M, et al. TAK1 is a pivotal therapeutic target for tumor progression and bone destruction in myeloma[J]. Haematologica, 2021, 106(5): 1401-1413. 10.3324/haematol.2019.234476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Terpos E, Szydlo R, Apperley JF, et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index[J]. Blood, 2003, 102(3): 1064-1069. 10.1182/blood-2003-02-0380. [DOI] [PubMed] [Google Scholar]
- 8. Wang XT, He YC, Tian S, et al. Fluid shear stress increases osteocyte and inhibits osteoclasts via downregulating receptor-activator of nuclear factor κB (RANK)/osteoprotegerin expression in myeloma microenvironment[J]. Med Sci Monit, 2019, 25: 5961-5968. 10.12659/MSM.915986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Xu GS, Liu K, Anderson J, et al. Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation[J]. Blood, 2012, 119(18): 4205-4214. 10.1182/blood-2011-05-353300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Yokota K, Sato K, Miyazaki T, et al. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis[J]. Arthritis Rheumatol Hoboken N J, 2021, 73: 1145-1154. 10.1002/art.41666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Tao HQ, Li WM, Zhang W, et al. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways[J]. Pharmacol Res, 2021, 174: 105967. 10.1016/j.phrs.2021.105967. [DOI] [PubMed] [Google Scholar]
- 12. Marahleh A, Kitaura H, Ohori F, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation[J]. Front Immunol, 2019, 10: 2925. 10.3389/fimmu.2019.02925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Zuo H, Yang DB, Yang QW, et al. Differential regulation of breast cancer bone metastasis by PARP1 and PARP2[J]. Nat Commun, 2020, 11(1): 1578. 10.1038/s41467-020-15429-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Zeissig MN, Hewett DR, Panagopoulos V, et al. Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells in vivo[J]. Haematologica, 2021, 106(12): 3176-3187. 10.3324/haematol.2020.253526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. İşgör İŞ, Toptaş T, Türkoz HK. Predictive immune markers for disease progression in multiple myeloma and monoclonal gammopathy of undetermined significance[J]. Turk J Haematol, 39(4): 245-253. 10.4274/tjh.galenos.2022.2022.0046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Vallet S, Pozzi S, Patel K, et al. A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function[J]. Leukemia, 2011, 25(7): 1174-1181. 10.1038/leu.2011.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Jordan LA, Erlandsson MC, Fenner BF, et al. Inhibition of CCL3 abrogated precursor cell fusion and bone erosions in human osteoclast cultures and murine collagen-induced arthritis[J]. Rheumatology, 2018, 57(11): 2042-2052. 10.1093/rheumatology/key196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Terpos E, Politou M, Szydlo R, et al. Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma[J]. Br J Haematol, 2003, 123(1): 106-109. 10.1046/j.1365-2141.2003.04561.x. [DOI] [PubMed] [Google Scholar]
- 19. Oyajobi BO, Franchin G, Williams PJ, et al. Dual effects of macrophage inflammatory protein-1α on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease[J]. Blood, 2003, 102(1): 311-319. 10.1182/blood-2002-12-3905. [DOI] [PubMed] [Google Scholar]
- 20. Fu R, Liu H, Zhao SJ, et al. Osteoblast inhibition by chemokine cytokine ligand3 in myeloma-induced bone disease[J]. Cancer Cell Int, 2014, 14(1): 1-8. 10.1186/s12935-014-0132-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. He ZC, Li XY, Guo YL, et al. Heme oxygenase-1 attenuates the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in multiple myeloma cells: Corelated with bortezomib tolerance in multiple myeloma[J]. J Cell Biochem, 2019, 120(5): 6972-6987. 10.1002/jcb.27879. [DOI] [PubMed] [Google Scholar]
- 22. Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells[J]. Blood, 2004, 103(6): 2308-2315. 10.1182/blood-2003-06-1992. [DOI] [PubMed] [Google Scholar]
- 23. Silbermann R, Bolzoni M, Storti P, et al. Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma[J]. Leukemia, 2014, 28(4): 951-954. 10.1038/leu.2013.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Vallet S, Mukherjee S, Vaghela N, et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease[J]. Proc Natl Acad Sci USA, 2010, 107(11): 5124-5129. 10.1073/pnas.0911929107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Ray A, Das DS, Song Y, et al. A novel agent SL-401 induces anti-myeloma activity by targeting plasmacytoid dendritic cells, osteoclastogenesis and cancer stem-like cells[J]. Leukemia, 2017, 31(12): 2652-2660. 10.1038/leu.2017.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Li X, Wang JJ, Zhu S, et al. DKK1 activates noncanonical NF-κB signaling via IL-6-induced CKAP4 receptor in multiple myeloma[J]. Blood Adv, 2021, 5(18): 3656-3667. 10.1182/bloodadvances.2021004315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Auziņa D, Beinaroviča I, Janicka-Kupra B, et al. Dickkopf-related protein 1 expression in bone marrow of multiple myeloma patients: correlation with bone disease and plasma cell malignancy type[J]. Exp Oncol, 2020, 42(4): 285-288. 10.32471/exp-oncology.2312-8852.vol-42-no-4.15289. [DOI] [PubMed] [Google Scholar]
- 28. Faraahi Z, Baud’huin M, Croucher PI, et al. Sostdc1: a soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells[J]. Bone, 2019, 122: 82-92. 10.1016/j.bone.2019.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Xu YY, Guo J, Liu J, et al. Hypoxia-induced CREB cooperates MMSET to modify chromatin and promote DKK1 expression in multiple myeloma[J]. Oncogene, 2021, 40(7): 1231-1241. 10.1038/s41388-020-01590-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Wu ZY, Zhang YF, Yang ZQ, et al. Elevation of miR-302b prevents multiple myeloma cell growth and bone destruction by blocking DKK1 secretion[J]. Cancer Cell Int, 2021, 21(1): 187. 10.1186/s12935-021-01887-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Oshima T, Abe M, Asano J, et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2[J]. Blood, 2005, 106(9): 3160-3165. 10.1182/blood-2004-12-4940. [DOI] [PubMed] [Google Scholar]
- 32. Takeuchi K, Abe M, Hiasa M, et al. TGF-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth[J/OL]. PLoS One, 2010, 5(3): e9870[2022-07-21]. 10.1371/journal.pone.0009870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Alabanza LM, Xiong Y, Vu B, et al. Armored BCMA CAR T cells eliminate multiple myeloma and are resistant to the suppressive effects of TGF-β[J]. Front Immunol, 2022, 13: 832645. 10.3389/fimmu.2022.832645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Standal T, Abildgaard N, Fagerli UM, et al. HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma[J]. Blood, 2007, 109(7): 3024-3030. 10.1182/blood-2006-07-034884. [DOI] [PubMed] [Google Scholar]
- 35. Tsubaki M, Seki S, Takeda T, et al. The HGF/met/NF-κB pathway regulates RANKL expression in osteoblasts and bone marrow stromal cells[J]. Int J Mol Sci, 2020, 21(21): 7905. 10.3390/ijms21217905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Merz M, Merz AMA, Wang J, et al. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma[J]. Nat Commun, 2022, 13(1): 807. 10.1038/s41467-022-28266-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Gooding S, Olechnowicz SWZ, Morris EV, et al. Transcriptomic profiling of the myeloma bone-lining niche reveals BMP signalling inhibition to improve bone disease[J]. Nat Commun, 2019, 10(1): 4533. 10.1038/s41467-019-12296-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Barhanpurkar AP, Gupta N, Srivastava RK, et al. IL-3 promotes osteoblast differentiation and bone formation in human mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2012, 418(4): 669-675. 10.1016/j.bbrc.2012.01.074. [DOI] [PubMed] [Google Scholar]
- 39. Singh K, Piprode V, Mhaske ST, et al. IL-3 differentially regulates membrane and soluble RANKL in osteoblasts through metalloproteases and the JAK2/STAT5 pathway and improves the RANKL/OPG ratio in adult mice[J]. J Immunol, 2018, 200(2): 595-606. 10.4049/jimmunol.1601528. [DOI] [PubMed] [Google Scholar]
- 40. Raimondi L, Luca AD, Amodio N, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation[J]. Oncotarget, 2015, 6(15): 13772-13789. 10.18632/oncotarget.3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Faict S, Muller J, De Veirman K, et al. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts[J]. Blood Cancer J, 2018, 8(11): 105. 10.1038/s41408-018-0139-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Zahoor M, Westhrin M, Aass KR, et al. Hypoxia promotes IL-32 expression in myeloma cells, and high expression is associated with poor survival and bone loss[J]. Blood Adv, 2017, 27(1): 2656-2666. 10.1182/bloodadvances.2017010801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Strømme O, Psonka-Antonczyk KM, Stokke BT, et al. Myeloma-derived extracellular vesicles mediate HGF/c-met signaling in osteoblast-like cells[J]. Exp Cell Res, 2019, 383(1): 111490. 10.1016/j.yexcr.2019.07.003. [DOI] [PubMed] [Google Scholar]
- 44. Zhang LM, Lei Q, Wang HX, et al. Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease[J]. Theranostics, 2019, 9(1): 196-209. 10.7150/thno.27550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Liu ZY, Liu H, Li YQ, et al. Multiple myeloma-derived exosomes inhibit osteoblastic differentiation and improve IL-6 secretion of BMSCs from multiple myeloma[J]. J Investig Med, 2020, 68(1): 45-51. 10.1136/jim-2019-001010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Raimondo S, Saieva L, Vicario E, et al. Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis[J]. J Hematol Oncol, 2019, 12(1): 2. 10.1186/s13045-018-0689-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Li BZ, Xu HX, Han HY, et al. Exosome-mediated transfer of lncRUNX2-AS1 from multiple myeloma cells to MSCs contributes to osteogenesis[J]. Oncogene, 2018, 37(41): 5508-5519. 10.1038/s41388-018-0359-0. [DOI] [PubMed] [Google Scholar]
- 48. Wu Y, Zhang ZM, Wu J, et al. The exosomes containing LINC00461 originated from multiple myeloma inhibit the osteoblast differentiation of bone mesenchymal stem cells via sponging miR-324-3p[J]. J Healthc Eng, 2022, 2022: 3282860. 10.1155/2022/3282860. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 49. Thompson CA, Purushothaman A, Ramani VC, et al. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes[J]. J Biol Chem, 2013, 288(14): 10093-10099. 10.1074/jbc.C112.444562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Ritchie JP, Ramani VC, Ren YS, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis[J]. Clin Cancer Res, 2011, 17(6): 1382-1393. 10.1158/1078-0432.CCR-10-2476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Ramani VC, Zhan FH, He JB, et al. Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma[J]. Oncotarget, 2016, 7(2): 1598-1607. 10.18632/oncotarget.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Galli M, Chatterjee M, Grasso M, et al. Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy[J/OL]. Haematologica, 2018, 103(10): e469-e472[2022-07-13]. 10.3324/haematol.2017.182865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Xia JL, Zhang JY, Wu X, et al. Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance[J]. Nat Commun, 2022, 13(1): 4007. 10.1038/s41467-022-31248-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Chiu M, Toscani D, Marchica V, et al. Myeloma cells deplete bone marrow glutamine and inhibit osteoblast differentiation limiting asparagine availability[J]. Cancers, 2020, 12(11): 3267. 10.3390/cancers12113267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Liu H, He J, Koh SP, et al. Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease[J]. Sci Transl Med, 2019, 11(494): eaau9087. 10.1126/scitranslmed.aau9087. [DOI] [PMC free article] [PubMed] [Google Scholar]
